Skip to main content

A Theory on the Transport and Distribution of Radon

  • Chapter
Modeling of Volcanic Processes

Part of the book series: Earth Evolution Sciences ((EES))

  • 189 Accesses

Abstract

Formulas relating the activity concentration under the ground surface, the rate of emanation from the ground surface and the activity concentration in the air, of natural Radon gas, were derived in terms of the common parameters such as soil porosity, Radon diffusion coefficient, soil gas flow velocity and the so-called effective turbulent diffusion coefficient of the air. The formulas were verified by taking some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birot, A., B. Adroguer and J. Fontan (1970): Vertical distribution of Radon-222 in the Atmosphere and its use for study of Exchange in the lower Troposphere, J. Geophys. Res. 75, 2373–2383.

    Article  Google Scholar 

  • Busigin, A., J. S. Nathwani and C. R. Phillips (1979): Attenuation of Radon flux in concrete from Uranium mill tailings by consolidation, Health Physics 36, 393–399.

    Article  Google Scholar 

  • Chirkov, A. M. (1976): Radon as a possible criterion for predicting eruptions as observed at Karymsky, Volcano Bull. Vulcanol. 39, 126–131.

    Google Scholar 

  • Clements, W. E. and M. H. Wilkening (1974): Atmospheric pressure effect on Rn222 transport across the earth-air interface, J. Geophys. Res. 79, 5025–5029.

    Article  Google Scholar 

  • Cohen, L. D., S. Barr, R. Krablin and H. Newstein (1972): Steady state vertical turbulent diffusion of Radon, J. Geophys. Res. 77, 2654–2668.

    Article  Google Scholar 

  • Culot, M. V. J., H. G. Olson and K. J. Schiager (1976): Effective diffusion coefficient of Radon in concrete; Theory and Method for field measurement, Health Physics 30, 263–270.

    Article  Google Scholar 

  • Edwards, J. C. and R. C. Bates (1980): Theoretical Evaluation of Radon emanation under a variety condition, Health Physics 37, 263–274.

    Article  Google Scholar 

  • Guedalia, D., J. L. Laurent, J. Fontan, D. Blanc and A. Druilhet (1970): A Study of Radon-220 emanation from Soils, J. Geophys. Res. 75, 357–369.

    Article  Google Scholar 

  • Grozier, W. D. (1969): Direct measurement of Radon-220 (Thoron) exhalation from the ground, J. Geophys. Res. 74, 4199–4205.

    Article  Google Scholar 

  • Hosier, C. R. (1969): Vertical diffusivity from Radon profiles, J. Geophys. Res. 74, 7018–7026.

    Article  Google Scholar 

  • Jacobi, W. and K. André (1963): The Vertical Distribution of Radon-222, Radon 220 and Their Decay Products in the Atmosphere, J. Geophys. Res. 68, 3799–3814.

    Google Scholar 

  • King, C.-Y. (1980): Episodic Radon changes in subsurface soil gas along active faults and possible relation to earthquakes, J. Geophys. Res. 85, 3065–3078.

    Article  Google Scholar 

  • Kirichenko, L. V. (1970): Radon exhalation from vast areas according to vertical distribution of its short lived decay products, J. Geophys. Res. 75, 3639–3649.

    Article  Google Scholar 

  • Kovach, E. M. (1946): Diurnal variations of the Radon content of soil gas, Terrestial Mangetism and Electricity 52, 45–55.

    Article  Google Scholar 

  • Lettau, H. (1951): Diffusion in the upper atmosphere, Compendium of Meteorology, 320–333, Americal Meteorological Society, Boston.

    Google Scholar 

  • Megumi, K. and T. Mamuro (1973): Radon and Thoron exhalation from ground, J. Geophys. Res. 78, 1804–1808.

    Article  Google Scholar 

  • Pearson, J. E. and G. E. Jones (1965): Emanation of Radon-222 from Soils and its use as a tracer, J. Geophys. Res. 70, 5279–5290.

    Article  Google Scholar 

  • Schroeder, G. L., W. Kraner and R. D. Evans (1965): Diffusion of Radon in several naturally occurring soil types, J. Geophys. Res. 70, 471–474.

    Article  Google Scholar 

  • Staley, D. O. (1966): The Diurnal oscillations of Radon and Thoron and their decay products, J. Geophys. Res. 71, 3357–3367.

    Article  Google Scholar 

  • Ulomov, V. I. and B. Z. Mavashev (1967): A precursor of a strong tectonic earthquake, Dokl. Acad. Sci. USSR Earth Sci. Sect. 176, 9–11.

    Google Scholar 

  • Wilkening, M. H. and J. E. Hund (1960): Radon flux at the earth-air interface, J. Geophys. Res. 65, 3367–3370.

    Article  Google Scholar 

  • Yukimassa Ikebe (1970): Variation of Radon and Thoron concentrations in Relation to wind speed, J. Meteorol. Soc. Japan 48, 461–467.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Chi-Yu King Roberto Scarpa

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Soedojo, P. (1988). A Theory on the Transport and Distribution of Radon. In: King, CY., Scarpa, R. (eds) Modeling of Volcanic Processes. Earth Evolution Sciences. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89414-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89414-4_8

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08994-8

  • Online ISBN: 978-3-322-89414-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics