Skip to main content

Biologische Funktion der “frühen” Übergangsmetalle: Molybdän, Wolfram, Vanadium, Chrom

  • Chapter
Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 408 Accesses

Zusammenfassung

Im Gegensatz zu “späten” Übergangsmetallen wie Cobalt, Nickel oder Kupfer zeichnen sich die Metalle aus dem vorderen Bereich der Übergangsmetallreihen dadurch aus, daß sie unter aeroben Bedingungen in wäßriger Lösung hohe Oxidationsstufen, hohe Koordinationszahlen und “harte”, insbesondere negativ geladene Sauerstoff-Koordinationszentren bevorzugen. In vielen Fällen ergibt sich dadurch eine negative Gesamtladung der resultierenden Oxo- oder Hydroxo-Komplexe, was vor allem im Hinblick auf physiologische Aufnahme- und Mobilisierungs-Mechanismen von Bedeutung ist. Für Scandium und Titan am Beginn der ersten (3d-)Übergangsmetallreihe konnte zwar noch keine physiologische Bedeutung nachgewiesen werden; Vanadium und Chrom sowie dessen schwerere Homologe im Periodensystem, Molybdän und Wolfram, besitzen jedoch recht differenzierte physiologische Funktionen. Das biologisch bedeutendste Element in dieser Reihe ist zweifellos das Molybdän, dessen Chemie und enzymatische Funktionen (Stiefel, Coucouvanis, Newton; Bray; Burgmayer, Stirfrl) im Bereich von Sauerstoff-Übertragung und Stickstoff-Fixierung ausführlicher vorgestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverweise

  • E.I. Stiefel, D. Coucouvanis, W.E. Newton (Hrsg.): Molybdenum Enzymes, Cofactors, and Model Systems,ACS Symposium Series No. 535

    Google Scholar 

  • R.C. Bray, Rev. Biophys. 21 (1988) 299: The inorganic biochemistry of molybdoenyzmes

    Google Scholar 

  • S.J.N. Burgmayer, E.I. Stiefelin (h), S. 943: Molybdenum enzymes, cofactors, and model systems

    Google Scholar 

  • I. Yamamoto, T. Saiki, S.M. Liu, L.G. Ljungdahl, J. Biol. Chem. 258 (1983) 1826: Purification and properties of NADP-dependent formate dehydrogenase from Clostridium themioaceticum, a tungsten-selenium-iron protein

    Google Scholar 

  • R. Wagner, J.R. Andreesen, Arch. Microbiol. 147 (1987) 295: Accumulation and incorporation of 185 W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum

    Google Scholar 

  • R.A. Schmitz, S.P.J. Albracht, R.K. Thauer, Febs 11479 309 (1992) 78: Properties of the tungsten-substituted molybdenum formylmethanofuran dehydrogenase from Methanobacterium wolfei

    Google Scholar 

  • G.N. George, R.C. Prince, S. Mukund, M.W.W. Adams, J. Am. Chem. Soc. 114 (1992) 3521: Aldehyde ferredoxin oxidoreductase from the hyperthemmophilic archaebacterium Pyrococcus furiosus contains a tungsten oxo-thiolate center

    Google Scholar 

  • S.P. Cramer, P.K. Eidem, M.T. Paffett, J.R. Winkler, Z. DORI, H.B. GRAY, J. Am. Chem. Soc. 105 (1983) 799: X-ray absorption edge and EXAFS spectroscopic studies of molybdenum ions in aqueous solution

    Google Scholar 

  • R.H. Holm, Coord. Chem. Rev. 100 (1990) 183: The biologically relevant oxygen atom transfer chemistry of molybdenum: From synthetic analogue systems to enzymes

    Google Scholar 

  • R.S. Pilato, E.I. Stiefel in (z), S. 131: Catalysis by molybdenum-cofactor enzymes

    Google Scholar 

  • R. Hille in (d), Vol. 39 (2002), S. 187: Molybdenum enzymes containing the pyranopterin cofactor. An overview

    Google Scholar 

  • J.H. Weiner, R.A. Rothery, D. Sambasivarao, C.A. Trieber, Biochim. Biophys. Acta. 1102 (1992) 1: Molecular analysis of dimethylsulfoxide reductase: A complex iron-sulfur molybdoenzyme of Escherichia coli

    Google Scholar 

  • R.C. Bray, L.S. Meriwether, Nature (London) 506 (1966) 467: Electron spin resonance of xanthine oxidase substituted with molybdenum-95

    Google Scholar 

  • R. Roy, M.W.W. Adams in (d), Vol. 39 (2002), S. 673: Tungsten-dependent aldehyde oxidoreductase: A new family of enzymes containing the pterin cafactor

    Google Scholar 

  • B. Kruger, O. Meyer, Biochim. Biophys. Acta 912 (1987) 357: Structural elements of bactopterin from Pseudomonas carboxydoflava carbon monoxide dehydrogenase

    Google Scholar 

  • R.P. Burns, C.A. Mcauliffe, Adv. Inorg. Chem. Radiochem. 22 (1979) 303: 1,2Dithiolene complexes of transition metals

    Google Scholar 

  • A. Abelleira, R.D. Galang, M.J. CLARKE, Inorg. Chem. 29 (1990) 633: Synthesis and electrochemistry of pterins coordinated to tetraammineruthenium(11)

    Google Scholar 

  • S.J.N. Burgmayer, A. Baruch, K. Kerr, K. Yoon, J. Am. Chem. Soc. 111 (1989) 4982: A model reaction for Mo(VI) reduction by molybdopterin

    Google Scholar 

  • B. Fischer, J. Strahle, M. Vlscontini, HeIv. Chim. Acta 74 (1991) 1544: Synthese und Kristallstruktur des ersten chinoiden Dihydropterinmolybdän(IV)-Komplexes

    Google Scholar 

  • R.J. Greenwood, G.L. Wilson, J.R. Pilbrow, A.G. Wedd, J. Am. Chem. Soc 1154 (1993) 5385: Molybdenum(V) sites in xanthine oxidase and relevant analog complexes: Comparison of oxygen-17 hyperfine coupling

    Google Scholar 

  • Z. Xwo, C.G. Young, J.H. Enemark, A.G. Wedd, J. Am. Chem. Soc. 1114 (1992) 9194: A single model displaying all the important centers and processes involved in catalysis by molybdoenzymes containing (Mov 1 O 2 ( 2 + active sites

    Google Scholar 

  • R. Soderlund, T. Rosswall in (g), Vol. 1, Part B,1982, S. 61: The nitrogen cycles

    Google Scholar 

  • S.J. Ferguson, Trends Biochem. Sci. 12 (1987) 354: Denitrification: A question of the control and organization of electron and ion transport

    Google Scholar 

  • J. Erfkamp, A. Muller, Chem. Unserer Zeit 24 (1990) 267: Die Stickstoff-Fixierung D.J. LOWE, R.N.F. THORNELEY, B.E. SMITH in (o), Part 1,S. 207: Nitrogenase

    Google Scholar 

  • B.E. Smith, R.R. Eady, Eur. J. Biochem. 205 (1992) 1: Metalloclusters of the nitrogenases

    Google Scholar 

  • R.A. Henderson, G. J. Leigh, C.J. Pickett, Adv. Inorg. Chem. Radiochem. 27 (1983) 198: The chemistry of nitrogen fixation and models for the reactions of nitrogenase

    Google Scholar 

  • M.M. Georgiadis et al., Science 257 (1992) 1653: Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii

    Google Scholar 

  • J. Kim, D.C. Rees, Science 257 (1992) 1677: Structural models for the metal centers in the nitrogenase molybdenum-iron protein

    Google Scholar 

  • J. Kim, D.C. Rees, Nature (London) 360 (1992) 553: Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii

    Google Scholar 

  • A.E. True, M.J. Nelson, R.A. Venters, W.H. Orme-Johnson, B.M. Hoffman, J. Am.

    Google Scholar 

  • Chem. Soc. 110 (1988) 1935: 57 Fe hyperfine coupling tensors of the FeMo cluster in Azotobacter vinelandii MoFe protein: Determination by polycrystalline ENDOR spectroscopy

    Google Scholar 

  • D. Sellmann, W. Soglowek, F. Knoch, M. Moil, Angew. Chem. 101 (1989) 1244: Nitrogenase-Modellverbindungen: (,u-N 2 H 2 (Fe(“NHS 4 ’)) 2 (, der Prototyp für die Koordination von Diazen an Eisen-Schwefel-Zentren und seine Stabilisierung durch starke N-H• • • S-Wa sserstoffbrücken

    Google Scholar 

  • R.R. Schrock, R.M. Kolodziej, A.H. Llu, W.M. Davis, M.G. Vale, J. Am. Chem. Soc. 112 (1990) 4338: Preparation and characterization of two high oxidation state molybdenum dinitrogen complexes: (MoCp*Me 3 ) 2 (u-N 2 ) and (MoCp*Me 3 )(,u-N 2 ) (WCp’Me3(

    Google Scholar 

  • B.B. Kaul, R.K. Hayes, T.A. George, J. Am. Chem. Soc. 112 (1990) 2002: Reactions of a resin-bound dinitrogen complex of molybdenum

    Google Scholar 

  • C.J. Pickerr, J. Talarmin, Nature (London) 317 (1985) 652: Electrosynthesis of ammonia

    Google Scholar 

  • J.R. Chisnell, R. Premakumar, P.E. BISHOP, J. Bacteriol. 170 (1988) 27: Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii

    Google Scholar 

  • A. MÜLLER, R. Jostes, E. Krickemeyer, H. BÖGGE, Naturwissenschaften 74 (1987) 388: Zur Rolle des Heterometall-Atoms im N Z reduzierten Protein der Nitrogenase

    Google Scholar 

  • R.M. Garrels, C.L. Christ: Solutions, Minerals, and Equilibria, Freeman 0026 Cooper, San Francisco, 1965

    Google Scholar 

  • C.D. Garner, J.M. Arber, I. Harvey, S.S. Hasnain, R.R. Eady, B.E. Smith, E. DE Boer, Wever, Polyhedron 8 (1989) 1649: Characterization of molybdenum and vanadium centers in enzymes by X-ray absorption spectroscopy

    Google Scholar 

  • S. Ciurli, R.H. Holm, Inorg. Chem. 28 (1989) 1685: Insertion of (VFe 3 S 4 J 2 + and (MoFe 3 S 4 3 + cores into a semirigid trithiolate cavitand ligand: Regiospecific reactions at a vanadium site similar to that in nitrogenase

    Google Scholar 

  • D. Rehder, C. Woitha, W. Priebsch, H. Gailus, J. Chem. Soc., Chem. Commun. (1992) 364: trans-(Na(tht)(V(N 2 ) 2 (Ph 2 PCH 2 CH 2 PPh 2 ) 2 : Structural characterization of a dinitrogenvanadium complex, a functional model for vanadium nitrogenase

    Google Scholar 

  • R. Wever, K. Kustin, Adv. Inorg. Chem. 53 (1990) 81: Vanadium: A biologically relevant element

    Google Scholar 

  • D. Rehder, Angew. Chem. 103 (1991) 152: Bioanorganische Chemie des Vanadiums

    Google Scholar 

  • A. Butler, C.J. Carrano, Coord. Chem. Rev. 109 (1991) 61: Coordination chemistry of vanadium in biological systems

    Google Scholar 

  • Y. SHECHTER, A. SHISHEVA, Endeavor 17 (1993) 27: Vanadium salts and the future treatment of diabetes

    Google Scholar 

  • M. Krauss, H. Basch, J. Am. Chem. Soc. 114 (1992) 3630: Is the vanadate anion an analogue of the transition state of RNAse A

    Google Scholar 

  • F.H. Nielsen, Faseb J. 5 (1991) 2661: Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic; Current knowledge and speculation

    Google Scholar 

  • A. Butler, M.J. Clague, G.E. Meister, Chem. Rev. 94 (1994) 625: Vanadium peroxide complexes

    Google Scholar 

  • D.C. Crans, Comments Inorg. Chem. 16 (1994) 35: Enzyme interactions with labile oxovanadates and other polyoxometalates

    Google Scholar 

  • M.J. Smith, D. KIM, B. Horenstein, K. Nakanishi, K. Kustin, Acc. Chem. Res. 24 (1991) 117: Unraveling the chemistry of tunichrome

    Google Scholar 

  • E. Bayer, G. Schiefer, D. Waidelich, S. Scippa, M. DE VINCENTIIS, Angew. Chem.lnt. Ed. Engl. 31 (1992) 52: Structure of the tunichrome of tunicates and their role in vanadium enrichment

    Google Scholar 

  • J.P. Michael, G. Pattenden, Angew. Chem. 105 (1993) 1: Marine Metaboliten und die Komplexierung von Metallionen: Tatsachen und Hypothesen

    Google Scholar 

  • E. Bayer, E. Koch, G. Anderegg, Angew. Chem. 99 (1987) 570: Amavadin, ein Beispiel für selektive Vanadiumbindung in der Natur — komplexchemische Studien und ein neuer Strukturvorschlag

    Google Scholar 

  • R.E. Berry, E.M. Armstrong, R.L. Beddoes, D. Collison, S.N. Ertok, M. HALLIWELL.

    Google Scholar 

  • C.D. Garner, Angew. Chem. 111 (1999) 871: Die Struktur von Amavadin

    Google Scholar 

  • J.W.P.M. Van Schijndel, E.G.M. Vollenbroek, R. Wever, Biochim. Biophys. Acta 1161 (1993) 249: The chloroperoxidase from the fungus Curvularia inaequalis: A novel vanadium enzyme

    Google Scholar 

  • H. Vilter, Nachr. Chem. Tech. Lab. 39 (1991) 686: Haloperoxidasen aus Braunalgen A. BUTLER, Curr. Opinion Chem. Biol. 2 (1998) 279: Vanadium haloperoxidases G.W. GRIBBLE, J. Chem. Educ. 71 (1994) 907: Natural organohalogens

    Google Scholar 

  • J.B. Vincent, Polyhedron 20 (2001) 1: The bioinorganic chemistry of chromium(lll)

    Google Scholar 

  • A. MÜLLER, E. Diemann, P. Sassenberg, Naturwissenschaften 75 (1988) 155: Chromium content of medicinal plants used against diabetes mellitus type II

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (2004). Biologische Funktion der “frühen” Übergangsmetalle: Molybdän, Wolfram, Vanadium, Chrom. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-92714-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-92714-9_11

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-23505-7

  • Online ISBN: 978-3-322-92714-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics