Skip to main content

Seismologische Grundlagen

  • Chapter
Bauwerke und Erdbeben

Zusammenfassung

Die Wirkungskette seismischer Phänomene besteht aus drei Gliedern, dem Entstehungsort seismischer Wellen, dem Ausbreitungsmedium und dem Einwirkort. Jedes der drei Glieder der Kette prägt den zeitlichen Verlauf und die Stärke der Erschütterungen, die letztendlich ein Bauwerk dynamisch belasten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur Kapitel 2

  • Abrahamson, N.A. und K.M. Shedlock (1997). Overview. Seismological Research Letters, 68, 9–23.

    Article  Google Scholar 

  • Aki, K. (1966). Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. 2. Estimation of earthquake moment, released energy, and stress-strain drop from G wave spectrum. Bulletin of the Earthquake Research Institute, 44, 23–88.

    Google Scholar 

  • Aki, K. (1993). Local site effects on weak and strong ground motions. Tectoniphysics, 218, 93–112.

    Article  Google Scholar 

  • Aki, K. und Richards, P. (1980). Quantitative seismology: Theory and Methods. Volumes 1 and 2, W.H. Freeman, San Francisco, California.

    Google Scholar 

  • Alheid, H.-J. und K.-G. Hinzen (1991). Numerical analysis and measurements of the seismic response of galleries. In: Soil Dynamics and Earthquake Engineering V, edited by IBF Karlsruhe, Elsevier, 719–730.

    Google Scholar 

  • Ambraseys, N., Smit, P, Brardi, R., Rinaldis, D., Cotton, F. und Berge, C. (2000). European strong motion database. European Council, Environment and Climate Research Programe.

    Google Scholar 

  • Ambraseys, N.N. und Simpson, K.A (1996). Prediction of vertical response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25, 401–412.

    Article  Google Scholar 

  • Ambraseys, N.N., Simpson, K.A. und Bommer, J.J. (1996). Prediction of horizontal response spectra in Europe. Earthquake Engineering and Structural Dynamics, 25, 371–400.

    Article  Google Scholar 

  • Arias, A. (1970). A measure of earthquake intensity. In: R.J. Hansen (ed.). Seismic Design for Nuclear Power Plants, MIT press, Cambridge, Massachusetts, 438–483.

    Google Scholar 

  • Arulmoli, K., Arulanadan, K., und Seed, H.B. (1985). A new method for evaluating liquefaction potential. Journal of the Geotechnical Engineering Division, ASCE, 111, 95–114.

    Article  Google Scholar 

  • Atakan, K., Midzi, V., Moreno Toiran, B., Vanneste K., Camelbeeck, T. und Meghraoui, M. (2000). Seismic hazard in regions of present day low seismic activity: uncertainties in the paleoseismic investigations along the Bree Fault Scarp (Roer Graben, Belgium). Soil Dynamics and Earthquake Engineering.

    Google Scholar 

  • Bakun, W.H. und C.M. Wentworth (1997). Estimating earthquake location and magnitude from seismic intensity data, Bulletin of the Seismological Society of America, 87, 1502–1521.

    Google Scholar 

  • Bakun, W.H und C.M. Wentworth (1999). Erratum to Estimating earthquake location and magnitude from seismic intensity data, Bulletin of the Seismological Society of Amreica, 89, 557.

    Google Scholar 

  • Bath, M. (1973). Introduction to seismology. Birkhäuser, Basel und Stuttgart.

    Google Scholar 

  • Bart, A. (2002). Ludger Mintrop. www.uni-geophys.gwdg.de/~eifel/Seismo_HTML-/mintrop.htm

    Google Scholar 

  • Ben-Menahem, A. & Singh, S.J. (1981). Seismic waves and sources, Springer Verlag, New York.

    Book  MATH  Google Scholar 

  • Ben-Menahem, A. und Singh, S.J. (1981). Seismic waves and sources. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Bolt, B.A. (1969). Duration of strong motions. Proceedings of the 4th World Conference an Earthquake Engineering, Santiago, Chile, 1304–1315.

    Google Scholar 

  • Boore, D.M und Joynerm W.B. (1994). Prediction of ground motion in North America. In: Proceedings of the ATC-35 Seminar on new Developments on Earthquake Ground Motion Estimates an Implications for Engineering Design Practice, Applied Technology Council, Redwood City, 1–14.

    Google Scholar 

  • Campbell, K.W. (1981). Near-source attenuation of peak horizontal acceleration. Bulletin of the Seismological Society of America, 71, 2039–270.

    Google Scholar 

  • Castro, G. (1969). Liquefaction of sands. Harvard Soil Mechanics Series 87, Harvard University, Cambridge, Massachusetts.

    Google Scholar 

  • Chen, P und Chen, H., 1989. Scaling law and its applications to earthquake statistical relations, Tectonophysics, 166, 53–72.

    Article  Google Scholar 

  • DeAlba, P., Baldwin, K., Janoo, V., Roe, G., und Chelikkel, B. (1984). Elastic wave velocities an liquefaction potential. Geotechnical Testing Journal, ASTM, 7, 77–88.

    Article  Google Scholar 

  • Ekström, G. and Dziewonski, A.M., 1988. Evidence of bias in estimations of earthquake size. Nature, 3322, p. 319–323.

    Article  Google Scholar 

  • Ewald, M. (2001). Numerical simulation of site effects with application to the Cologne basin. Diplomarbeit, Institut für Angewandte Geophysik, LMU München.

    Google Scholar 

  • Ewing, M., Jardesky, W., und Press, F. (1957) Elastic waves in layered media. McGraw-Hill, New York, 380.

    MATH  Google Scholar 

  • Flinn, E.A., Engdahl, E.R. und Hill, A.R. (1974). Seismic and geographical regionalization. Bulletin of the Seismological Society of America, 64, 770–793.

    Google Scholar 

  • Grünthal, G. (ed.) (1998). European macroseismic scale. Cahiers du Centre Europeéen de Géodynamique et de Séismologie, Luxembourg, 15.

    Google Scholar 

  • Grünthal, G. und GSHAP working group (1999). Seismic hazard assessment for Central, North and Northwest Europe: GSHAP Region 3. Annali di Geofísica, 42, 999–1011.

    Google Scholar 

  • Gutenberg, B. (1929). Lehrbuch der Geophysik. Gebrüder Borntraeger, Berlin, 1017.

    MATH  Google Scholar 

  • Gutenberg, B. und C.F. Richter (1956). Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America, 46, 104–145.

    Google Scholar 

  • Gutenberg, B und C.F. Richter (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 1985–1988.

    Google Scholar 

  • Gutenberg, B. und C.F. Richter (1944). Seismicity of the earth and related phenomena. Princeton University Press, New Jersey, 310.

    Google Scholar 

  • Haldar, A und Tang, W.H. (1981). Probabilistic evaluation of liquefaction potential. Journal of the Geotecnical Engineering Division, ASCE, 107, 577–589.

    Google Scholar 

  • Haskell, N.A. (1964). Total energy und energy spectral density of elastic waves from propagating faults. Bulletin of the Seismological Society of America, 54, 1811–1841.

    Google Scholar 

  • Heaton, T.H., Anderson, D.L., Arabasz, W.J., Buland, R., Ellsworth, W.L., Hartzell, S.H., Lay, T. und Spudich, P. (1989). National seismic system science plan. Geol. Surv. Curic, 1031.

    Google Scholar 

  • Hinzen, K.-G und Gossler, J. (2002). Potency and Moment-Magnitude Relations from Broadband Seismograms for the Northern Rhine Area, Central Europe. Submitted: Geophysical Journal International.

    Google Scholar 

  • Hinzen, K.-G. und Oemisch, M. (2001). Location and magnitude from seismic intensity data of recent and historic earthquakes in the Northern Rhine area, Central Europe. Bulletin Seismological Society America, 91, 40–56.

    Article  Google Scholar 

  • Idriss, I.M., Dobry, R., und Singh, R.D. (1978). Nonlinear behavior of soft clays during cyclic loading. Journal of the Geotechnical Engineering Divison, ASCE, 104, 1427–1447.

    Google Scholar 

  • Ishihara, K. (1993). Liquefaction and flow failure during earthquakes. Geotechnique, 43, 351–415.

    Article  Google Scholar 

  • Ishihara, K. und Yoshimine, M. (1992). Evaluation of settlement in sand deposits following liquefaction during earthquakes. Soils and Foundations, 32, 173–188.

    Article  Google Scholar 

  • Jones, L. (2000). True confessions from a magnitude-weary seismologist. Seismological Reseach Letters. 71, 395–396.

    Article  Google Scholar 

  • Jost, M. L., und R. B. Herrmann (1989). A student’s guide to und review of moment tensors, Seismological Research Letters 60, 37–57.

    Google Scholar 

  • Joyner W.J. und Boore, D.M. (1981) Peak horizontal acceleration and velocity from strong ground motion recordings including records from the 1979 Imperial Valley, California earthquake. Bulletin of the Seismological Society of America, 71, 2011–2038.

    Google Scholar 

  • Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82, 2981–2987.

    Article  Google Scholar 

  • Kanamori, H. (1983). Magnitude scale and quantification of earthquakes. Tectonophysics, 93, 185–199.

    Article  Google Scholar 

  • Kasahara, K. (1981). Earthquake machanichs. Cambridge University Press, Cambridge.

    Google Scholar 

  • Keilis-Borok, V. I. (1950). Concerning the determination of the seismic parameters of a focus. TR. Geogiz. Inst. Akad. Nauk. SSSR, 9, 3–19. (in Russisch)

    Google Scholar 

  • King, G. C. P. (1978). Geological faults, fractures, creep and strain, Philosophical Transactions Royal Society London, A., 288, 197–212.

    Article  Google Scholar 

  • Knödel, K., Krummel, H. und Lange, G. (1997). Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten — Geophysik. Springer, Berlin, 1063.

    Google Scholar 

  • Kövesligethy, R. (1907). Seismischer Stärkegrad und Intensität der Beben. Gerlands Beiträge zur Geophysik. VIII, Leipzigu

    Google Scholar 

  • Kramer, S.L. (1996). Geotechnical earthquake engineering. Prentice Hall, New Jersey, 653.

    Google Scholar 

  • Lawson, A.C. (chairman) 1908. The California earthquake of April 18, 1906: Report of the State Earthquake Investigation Commission: Carnegie Institution of Washington Publication 87, 2 vols.

    Google Scholar 

  • Lay, T. und Wallace, T.C. (1995). Modern global seismology. Academic Press, San Diego, California, 517.

    Google Scholar 

  • Leydecker, G. (2002): Erdbebenkatalog fur die Bundesrepublik Deutschland mit Randgebieten fur die Jahre 800 – 2001. — Datenfile, BGR Hannover.

    Google Scholar 

  • Leydecker, G. und Aichele, H. (1998): The Seismogeographical Regionalisation for Germany: The Prime Example of Third-Level Regionalisation. Geologisches Jahrbuch, Hannover, E 55, 85–98.

    Google Scholar 

  • Maruyama, T. (1968). Basic Theory of Seismic Waves. Part I of Earthquakes, Volcanoes, and Rockmechanics (ed. S. Miyamura), Kyoritsu Shuppan Co., Tokyo.(in Japanisch)

    Google Scholar 

  • McClapin (ed.) (1996). Paleoseismology. Academic Press, London, 588.

    Google Scholar 

  • McGuire, R.K. und Arabasz, W.J. (1990). An introduction to probabilistic seismic hazard analysis. In: S.H. Ward, (ed.), Geotechnical and Environmental Geophysics, Society of Exploration Geophysicists, 1, 333–353.

    Google Scholar 

  • Mitchell, J.K. und Tseng, D.-J. (1990). Assessment of liquefaction potential by cone penetration resistance. In: J.M. Duncan, (ed.), Proceedings, H. Bolton Seed Memorial Symposium, Berkeley, California, 2, 335–350.

    Google Scholar 

  • Murphy, J.R. und O’Brian, L.J. (1977). The correlation of peak ground acceleration with seismic intensity und other physical parameters. Bulletin of the Seismological Society of America, 67, 877–915.

    Google Scholar 

  • Nazarian, S, und Stokoe, K.H. (1983). Use of spectral analysis of surface waves for determination of moduli and thickness of pavement systems. Transportation Research Record 954, Transportation Road Board, Washington, D.C.

    Google Scholar 

  • Newmark, N.M. und Hall, W.J. (1982). Earthquake spectra and design. EERI Monograph, Earthquake Engineering Research Institute, Berkeley, California, 103.

    Google Scholar 

  • Reamer, S.K. und K.-G. Hinzen (2003). A minimum ID velocity model and magnitude attenuation relation for the northern Rhine Area, Germany, from earthquake recordings between 1975 and 2002. Submitted Journal of Geophysical Researech.

    Google Scholar 

  • Reid, H.F. (1910). The California earthquake of April 18, 1906. Publication 87, 21, Carnegie Institute of Washington, Washington, D.C.

    Google Scholar 

  • Reid, H.F. (1911). The elastic rebound theory of earthquakes. Bulletin of the Department of Geology, University of Berkeley, 6, 413–444.

    Google Scholar 

  • Reiter, L. (1990). Earthquake hazard analysis — Issues und insights. Columbia University Press, New York, 254.

    Google Scholar 

  • Richter, C.F. (1935). An instrumental earthquake scale. Bulletin of the Seismological Society of America, 25, 1–32.

    Google Scholar 

  • Richter, C.F. (1958). Elementary seismology. W.H. Freeman, San Francisco.

    Google Scholar 

  • Scherbaum, F. (1994). Modelling the Roermond Earthquake of April 13, 1992 by stochastic simulation of its high frequency strong ground motion, Geophysical Journal International, 119, 31–43.

    Article  Google Scholar 

  • Schneider, G. (1980). Naturkatastrophen. Enke Verklag, Stuttgart, 364.

    Google Scholar 

  • Scholz, C. H. (1990). The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Schwarz, D.P. und Coppersmith, K.J. (1984). Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681–5698.

    Article  Google Scholar 

  • Seidl, D. und Berckhemer, H. (1982). Determination of source moment and radiated seismic energy from broadband recordings. Physics of the Earth and Planetary Interior, 30, 209–213.

    Article  Google Scholar 

  • Sheriff, R.E. und Geldart, L.P. (1995). Exploration seismology. Cambridge University Press, Cambridge, 592.

    Book  Google Scholar 

  • Skoko, D. und Mokrovic, J. (1982). Andrija Mohorovicic. Skolska Knjiga, Zagreb, 147.

    Google Scholar 

  • Sponheuer, W. (1960). Methoden zur Herdtiefenbestimmung in der Makroseismik. Freiberger Forschungshefte, 88, 10–117.

    Google Scholar 

  • Spudich, P., Joyner, A.G., Lindh, A.G., Boore, D.M., Margaris, B.M. und Fletcher, J.B. (1999). SEA99: A revised ground motion prediction relation for use in extensional tectionic regimes. Bulletin of the Seismological Society of America, 89, 1156–1170.

    Google Scholar 

  • Triftinac, M.D. und Brady, A.G. (1975). A study of the duration of strong earthquake ground motion. Bulletin of the Seismological Society of America, 65, 581–626.

    Google Scholar 

  • Wald, D.J. und Heaton, T.H. (1994). Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake, Bulletin of the Sesimological Society of America, 84, 668–691.

    Google Scholar 

  • Wald, D.J., Heaton, T.H und Helmberger, D.V., (1991). Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong motion and broadband teleseismic data, Bull. Seis. Soc. Am., 81, 1540–1572.

    Google Scholar 

  • Wells, D.L. und Coppersmith, K.J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wilson, R.C (1993). Relation of Arias intensity to magnitude and distance in California. Open File Report 93–556, U.S. Geological Survey, Reston, Virginia, 42.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Meskouris, K., Hinzen, KG. (2003). Seismologische Grundlagen. In: Bauwerke und Erdbeben. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96831-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96831-9_2

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96832-6

  • Online ISBN: 978-3-322-96831-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics