Skip to main content

Sorptionspumpen

  • Chapter
Wutz Handbuch Vakuumtechnik

Zusammenfassung

In diesem Kapitel erfahren Sie etwas über die Pumpweise und Kenndaten von Adsorptions-pumpen, Titansublimationspumpen, Getterpumpen, besonders NEG-Pumpen, und Ionenzerstäuberpumpen. Die physikalischen Grundlagen der Sorption wurden in Kapitel 5 behandelt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. ISO 3529/2 — Vakuumtechnik; Verzeichnis von Fachausdrücken und Definitionen. Teil 2: Vakuumpumpen und zugehörige Begriffe,1981.

    Google Scholar 

  2. DIN 28400, Teil 2, Vakuumtechnik Benennung und Definitionen, 1980, Beuth-Verlag, Berlin.

    Google Scholar 

  3. D. M. Grubner, u.a., Molekularsiebe. VEB Deutscher Verlag der Wissenschaften, Berlin 1968.

    Google Scholar 

  4. R. Dobrozemsky, Vakuum-Technik 22 (1973), 41–48.

    Google Scholar 

  5. J. Visser und J. J. Scheer, Ned. Tijdschrift Vac. Techn. 11 (1973), 17–25.

    Google Scholar 

  6. F. T. Turner und M. Feinleib, Eighth Nat. Vac. Symp. and Second. Int. Nat. Vac. Congress, Pergamon Press, 1961.

    Google Scholar 

  7. S. A. Stern und F S. Paolo, J. Vac. Sei. Techn. 4 (1967), 347–355.

    Article  ADS  Google Scholar 

  8. E. E. Windsor, „Physik und Technik von Sorptions-und Desorptionsvorgängen bei niederen Drücken“, Rudolf A. Lang Verlag, 1963. 278–283.

    Google Scholar 

  9. D. M. Creek et al., J. Sei. Instr. (J. Phys. E) 2 (1968), 582–584.

    Article  ADS  Google Scholar 

  10. H. C. Miller, J. Vac. Sei. Techn. 10 (1973), 859–861.

    Article  ADS  Google Scholar 

  11. B. Ferrario, Getters and Getter pumps, Kapitel 5, S.261–315, in Foundations of Vacuum Science and Technology by James M. Lafferty (ed.), John Wiley and Sons, New York, 1998.

    Google Scholar 

  12. L. Briesacher et al., Non evaporable Getter pumps for semiconductor processing equipment. Ultraclean Technology, 1 (1990), 49–57.

    Google Scholar 

  13. C. Boffito, et al., An update of non-evaporable getters in electron tubes, Vakuum-Technik (1986), 212–217.

    Google Scholar 

  14. W. Juhr, Einsatz von Gettern zur Aufrechterhaltung von Vakua, S. 145–169, in Kerske et al. Vakuumtechnik in der industriellen Praxis, Expert Verlag, Ehningen 1987.

    Google Scholar 

  15. G. Kienel und A. Lorenz, Vakuum-Technik 9 (1960), 1–6.

    Google Scholar 

  16. A. K. Gupta und J. H. Leck, An evaluation of the titanium sublimation pump, Vacuum 25 (1975), 362–372.

    Article  Google Scholar 

  17. L. Eisworth et al., Vacuum 15 (1965), 337–345.

    Article  Google Scholar 

  18. S. Wagener, Z. angew. Physik 6 (1954), 433–442.

    Google Scholar 

  19. J. Lücken, Vakuum-Technik 10 (1961), 1–40.

    Google Scholar 

  20. L. F. Ehrke und C M. Slack, J. Appl. Phys. 28 (1957), 1027–1030.

    Article  Google Scholar 

  21. P. Strubin, J. Vac. Sei. Techn. 17 (1980), 1216–1220.

    ADS  Google Scholar 

  22. A. M. McCracken und N. A. Pashley, J. Vac. Sei. Techn. 3 (1966), 96–98.

    Article  ADS  Google Scholar 

  23. D. Blechschmidt und W. Unterlechner, Vakuum-Technik 28 (1979), 130–135.

    Google Scholar 

  24. D. R. Sweetman, The achievement of very high pumping speeds in the UHV region, Nucl. Instr. Meth. 13 (1961), 317.

    Article  Google Scholar 

  25. G. I. Grigorov and K. K. Tzatzov, Theory of getter pump evaluation. Sticking coefficients of common gases on continuously deposited getter films, Vacuum 33 (1983), 139.

    Article  Google Scholar 

  26. G. I. Grigorov, Apparent and real values of common gas sticking coefficients on titanium films and application to getter pump devices with periodic active films renovation, Vacuum 34 (1984), 513.

    Article  Google Scholar 

  27. L. D. Hall, Rev. Sei. Instr. 29 (1958), 367–370.

    Article  ADS  Google Scholar 

  28. F. M. Penning, Physica IV. 2 (1937), 71–75

    Article  ADS  Google Scholar 

  29. F. M. Penning, Philips Techn. Rundschau 2 (1937), 201–208.

    Google Scholar 

  30. W. Knauer, J. Appl. Phys. 33 (1961), 2093–2099.

    Article  ADS  Google Scholar 

  31. W. Schuurman, Rijnhuizen-Report 66–28 (1966), Universität Utrecht.

    Google Scholar 

  32. G. C. Bond, Catalysis by Metals, AcademicPress, New York, 1962, S. 69.

    Google Scholar 

  33. H. F. Winters, D. E. Home, E. E. Donaldson, Absorption of gases by electron impact,J. Chem. Phys. 41 (1964), 2766.

    Article  ADS  Google Scholar 

  34. S. L. Rutherford, Sputter ion pump for low pressure operation, Proc. 10th Nat. AVS Symposium 1963, Macmillan Company, New York, 1964, S. 185.

    Google Scholar 

  35. J. H. Singleton, Hydrogen pumping speed of sputter ion pumps, J. Vac. Sci. Techn. 6 (1969), 316.

    Article  ADS  Google Scholar 

  36. H. Henning, Proc. 8. Intern. Vac. Congress, Cannes 1980, Suppl. Rev., „Le Vide“, Nr. 201, 143–146.

    Google Scholar 

  37. E. M. Reikhrudel, G. V. Smirnitskaya und G. V. Burnisenica, Ion pump with cold electrodes and its charcteristics, Radiotekh. Electron 2 (1956), 253.

    Google Scholar 

  38. T. Tom and B. D. James, Inert gas ion pumping using differential sputter yield cathodes, J. Vac. Sci. Technol. 6 (1969), 304.

    Article  ADS  Google Scholar 

  39. R. L. Jepsen, Proc. 4th Int. Vac. Congr. London, 1968, Vol. I (1968), 317.

    Google Scholar 

  40. K. M. Welch, Capture Pumping Technology,Pergamon Press, Oxford, 1991, S.103 ff.

    Google Scholar 

  41. W. Baechler and H. Henning, Proc. 4th Int. Vac. Congr. London, 1968, Vol. I (1968), 365.

    Google Scholar 

  42. S. Komiya and N. Yagi, J. Vac. Sci. Technol. 6 (1969), 54.

    Article  ADS  Google Scholar 

  43. W. M. Brubaker, Transact. of the 6th Nat. Vac. Symp. 1959; Pergamon Press, 302–306.

    Google Scholar 

  44. J. A. Vaumoran und M. P. Biasio, Vacuum 20 (1970), 109–111.

    Article  Google Scholar 

  45. J.H. Singleton., Hydrogen pumping by sputter-ion pumps and getter pumps, J. Vac. Sci. Techn. 8 (1971), 275–282.

    Article  ADS  Google Scholar 

  46. H. Oechsner, Z. Naturf. 21a (1966), 859.

    ADS  Google Scholar 

  47. U. R. Bance and R. D. Craig, Vacuum 16 (1966), 647–652.

    Article  Google Scholar 

  48. M. Pierini, L. Dolieno, A new sputter-ion pump element, J. Vac. Sci. Techn. A 1 (1983), 140.

    ADS  Google Scholar 

  49. U. Cummings et al., Vacuum System for the Stanford Storage Ring, SPEAR, J. Vac, Sci. Technol. 8 (1971), 348.

    Article  MathSciNet  ADS  Google Scholar 

  50. H. Pingel and L. Schulz, Proc. 8. Intern. Vac. Congress, Cannes 1980, Suppl. Rev., „Le Vide“, Nr. 201, 147–150.

    Google Scholar 

  51. D. Blechschmidt, et al., Proc. 8. Intern. Vac. Congress, Cannes 1980, Suppl. Rev., „Le Vide“, Nr. 201, 159–163.

    Google Scholar 

  52. G. Reich, Investigation of titanium sheets for sputter ion pumps, Supplemento Al Nuovo Cimento 1 (1963), 487.

    Google Scholar 

  53. D. Lichtman, Hydrocarbon formation in ion pumps, J. Vac. Sci. Techn. 1 (1964), 23.

    Article  ADS  Google Scholar 

  54. H. Henning, Vakuum-Technik 24 (1975), 37–43.

    Google Scholar 

  55. R. A. Douglas et al., Rev. Sci. Instr. 36 (1965), 1–6.

    Article  ADS  Google Scholar 

Weitere, nicht zitierte, Literatur

  1. R. L. Jepsen, The physics of sputter ion pumps„ Proc. of the Fourth Intern. Vac. Congress, Manchester, IOP Conference Series No. 5, London (1969), 317–324.

    Google Scholar 

  2. B. Ferrario et al., A new Generation of porous non-evaporable getters. Vacuum 35 (1985), 13.

    Article  Google Scholar 

  3. C. Benvenuti and F. Francia, Room-temperature pumping characteristics of a Zr-Al non-evaporable getter for individual gases, J. Vac. Sei. Techn. A 6 (4) (1988), 2528–2534.

    Article  ADS  Google Scholar 

  4. C. Boffito, et al., Gettering in cryogenic applications. J. Vac. Sci. Techn., A 5 (4) (1987), 3442–3445.

    Article  ADS  Google Scholar 

  5. M. Audi. and M. de Simon, Ion pumps, Vacuum 37 (1987), 629–636.

    Article  Google Scholar 

  6. M. Audi, et al., A new ultrahigh vacuum combination pump, J. Vac. Sci. Techn., A 5 (1987), 2587–2590.

    Article  ADS  Google Scholar 

  7. P. della Porta, J. Vac. Sci. Techn. 9 (1972), 532–538.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Karl Jousten

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Jousten, K., Paetz, S. (2004). Sorptionspumpen. In: Jousten, K. (eds) Wutz Handbuch Vakuumtechnik. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-96971-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-96971-2_10

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-96972-9

  • Online ISBN: 978-3-322-96971-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics