Skip to main content

Strömungen mit mehreren Phasen

  • Chapter
Führer durch die Strömungslehre

Zusammenfassung

Im folgenden werden Strömungen nicht-homogener Medien behandelt. Sie können aus zwei oder mehreren homogenen Teilbereichen (Phasen) mit unterschiedlichen Aggregatzuständen (gasförmig, flüssig, fest) bestehen, aber auch zwei nicht-mischbare Flüssigkeiten gehören zu diesem Themenkreis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. B. Gal-Or and S. Wash, Chem. Eng. Sci. 23 (1968), 1431.

    Article  Google Scholar 

  2. J. F. Harper, Advances in Applied Mechanics 12 (1972), 59.

    Article  Google Scholar 

  3. S. Saito, Science Rep. Tohoku Imp. Univ., Sendai, Japan, 2 (1913), 179.

    Google Scholar 

  4. T. D. Taylor and A. Acrivos, J. Fluid Mech. 18 (1964), 466.

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Savic, Nat. Res. Counc. Can. Rep. No. MT-22 (1953).

    Google Scholar 

  6. W. Ribtschinski, Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Math. Nat., Ser. A (1911), 40.

    Google Scholar 

  7. J. S. Hadamard, C. R. Acad. Sci. 152 (1911), 1735.

    MATH  Google Scholar 

  8. L. Trefethen, Physico-Chemical Hydrodynamics 1 (1980), 221.

    Google Scholar 

  9. W. Schneider, Physico-Chemical Hydrodynamics 2 (1981), 135.

    Google Scholar 

  10. S. A. Beresnev, V. G. Chernyak and P. E. Suetin, J. Fluid Mech. 176 (1987), 295–310.

    Article  MATH  Google Scholar 

  11. G. B. Wallis, Int. J. Multiphase Flow 1 (1974), 491.

    Article  MathSciNet  Google Scholar 

  12. E. Hochschwender, Diss. Heidelberg 1919.

    Google Scholar 

  13. S. A. Krzeczkowski, Int. J. Multiphase Flow 6 (1980), 227.

    Article  Google Scholar 

  14. W. v. Ohnesorge, ZAMM 16 (1936), 355.

    Article  Google Scholar 

  15. J. O. Hinze, Appl. Sci. Res. A1 (1948), 263, 273; AlChE. J. 1 (1955), 289.

    MathSciNet  Google Scholar 

  16. K. Ruff, Chem.-Ing.-Tech. 49 (1977), 418.

    Article  Google Scholar 

  17. A. Acrivos and T. S. Lo, J. Fluid Mech. 86 (1978), 641.

    Article  MATH  Google Scholar 

  18. E. J. Hinch and A. Acrivos, J. Fluid. Mech. 91 (1979), 401.

    Article  MATH  Google Scholar 

  19. P. Walzel, Chem.-Ing.-Tech. 52 (1980), 338.

    Article  Google Scholar 

  20. D. W. Moore, J. Fluid Mech. 23 (1965), 749.

    Article  Google Scholar 

  21. C. Plesko and H. J. Leutheusser, Proc. Intl. Conf. Fluid Dynamics, Beijing Univ. Press, 1987, pp. 631-636.

    Google Scholar 

  22. R. M. Davies and G. I. Taylor, Proc. Roy. Soc. A200 (1950), 375.

    Google Scholar 

  23. D. W. Moore, J. Fluid Mech. 6 (1959), 113.

    Article  MATH  Google Scholar 

  24. D. W. T. Rippin und J. F. Davidson, Chem. Eng. Sci. 22 (1967), 217.

    Article  Google Scholar 

  25. D. Bhaga and M. E. Weber, J. Fluid Mech. 105 (1981), 61–85.

    Article  Google Scholar 

  26. W. L. Haberman and R. K. Morton, Am. Soc. Civil Eng., Trans. 121 (1956), 227.

    Google Scholar 

  27. Th. Dumitrscu, ZAMM 23 (1943), 139.

    Article  Google Scholar 

  28. E. T. White and R. H. Beardmore, Chem. Eng. Sci. 17 (1962), 351.

    Article  Google Scholar 

  29. G. B. Wallis, General Electric Company, Rept. 62GL130, 1962. Vgl. auch [MP16], S. 287.

    Google Scholar 

  30. S. Hattori, Rept. Aeron. Res. Inst. Tokyo Imp. Univ., No. 115, 1935.

    Google Scholar 

  31. F. P. Bretherton, J. Fluid Mech. 10 (1961), 166.

    Article  MATH  MathSciNet  Google Scholar 

  32. E. E. Zukovski, J. Fluid Mech. 25 (1966), 821–837.

    Article  Google Scholar 

  33. D. E. Runge and G. B. Wallis (1965), vgl. [MP16], S. 304 ff.

    Google Scholar 

  34. P. Klemm (1986), priv. Mitteilung.

    Google Scholar 

  35. H.-J. Rath, Forsch. Ing.-Wes. 45 (1979), 83.

    Article  MathSciNet  Google Scholar 

  36. M. S. Plesset and A. Prosperetti, Ann. Rev. Fluid Mech. 9 (1977), 145–185.

    Article  Google Scholar 

  37. R. E. A. Arndt, Ann. Rev. Fluid Mech. 13 (1981), 273–328.

    Article  Google Scholar 

  38. W. Lauterborn, Phys. Blätter 32 (1976), 553.

    Google Scholar 

  39. J. R. Blake and D. C. Gibson, Ann. Rev. Fluid Mech. 19 (1987), 99–123.

    Article  Google Scholar 

  40. J. H. J. van der Meulen, Proc. XVIIth Intl. Congress Theoret. Appl. Mech., Grenoble 1988 (Eds. P. Germain et al.), North-Holland, Amsterdam 1989, pp. 369-386.

    Google Scholar 

  41. F. Numachi, Ing.-Arch. 7 (1936) und 9 (1938).

    Google Scholar 

  42. W. Lecher, Escher-Wyss-Mitteilungen 33 (1960), Heft 1, 2, 3.

    Google Scholar 

  43. Ph. Eisenberg and H. L. Pond, David Taylor Model Basin Rep. 688, 1944.

    Google Scholar 

  44. H. Reichardt, UM 6606 und 6618, 1944.

    Google Scholar 

  45. M. P. Tulin, David Taylor Model Basin Report 843, 1953.

    Google Scholar 

  46. T. Y. Wu, J. Fluid Mech. 13 (1962), 161.

    Article  MATH  MathSciNet  Google Scholar 

  47. T. Y. Wu and D. P. Wang, J. Fluid Mech. 18 (1963), 65.

    Article  Google Scholar 

  48. R. Eppler, J. Rat. Mech. Anal. 3 (1954), 591.

    MATH  MathSciNet  Google Scholar 

  49. A. Roshko, NACA Techn. Note 3168, 1954.

    Google Scholar 

  50. B. R. Parkin, J. Ship Res. 1 (1958), 34.

    Google Scholar 

  51. Lord Rayleigh, Proc. Lond. Math. Soc. 10 (1879), 4; oder Scientific Papers 1, S. 361.

    Article  MATH  Google Scholar 

  52. G. Grabitz und G. E. A. Meier, ZAMM-Tagungsheft 1983.

    Google Scholar 

  53. D. B. Bogy, Ann. Rev. Fluid Mech. 11 (1979), 207–228.

    Article  Google Scholar 

  54. K. C. Chaudhary, L. G. Redekopp and T. Maxworthy, J. Fluid Mech. 96 (1980), 257–274, 275-286, 287-297.

    Article  MATH  Google Scholar 

  55. A. Müller und S. Grossmann, Z. Naturforschung 40a (1985), 968–975.

    Google Scholar 

  56. P. Walzel, Chem.-Ing.-Tech. 51 (1979), 525.

    Article  Google Scholar 

  57. J. F. Geer and J. C. Strikwerda, J. Fluid Mech. 101 (1980), 53.

    Article  MATH  Google Scholar 

  58. P. Walzel, Chem.-Ing.-Tech. 52 (1980), 652–654.

    Article  Google Scholar 

  59. P. Walzel und U. Klaumünzner, Chem.-Ing.-Tech. 52 (1980), 600–601.

    Article  Google Scholar 

  60. A. F. Charwat and R. R. Russali, Physico-Chemical Hydrodynamics 2 (1981), 55–60.

    Google Scholar 

  61. A. Haenlein, Forschung 2 (1931), 139.

    Google Scholar 

  62. C. Weber, ZAMM 11 (1931), 136.

    Article  MATH  Google Scholar 

  63. P. Schmidt und P. Walzel, Chem.-Ing.-Tech. 52 (1980), 304–311.

    Article  Google Scholar 

  64. P. Walzel und H. Michalski, Verfahrenstechnik 14 (1980), 157.

    Google Scholar 

  65. G. F. Scheele and B. J. Meister, AlChE J. 14 (1968), 15–19.

    Article  Google Scholar 

  66. D. B. Bogy, J. Fluid Mech. 105 (1981), 157–176.

    Article  MATH  Google Scholar 

  67. H. C. Gupta and F. U. Bracco, AlAA J. 16 (1978), 1053–1061.

    Google Scholar 

  68. W. R. Schowalter, Mechanics of Non-Newtonian Fluids, Pergamon Press, Oxford 1978.

    Google Scholar 

  69. N. Dombrowski and W. R. Johns, Chem. Eng. Sci. 18 (1963), 203–214.

    Article  Google Scholar 

  70. N. Dombrowski and G. Munday, Biochemical and Biological Engineering Science (Ed. N. Blakebrough), Vol. 2 (1968), 209-320 (Academic Press).

    Google Scholar 

  71. J. A. Schetz and A. Padhye, A1AA J. 15 (1977), 1385–1390.

    Article  Google Scholar 

  72. J. A. Schetz, E. A. Kush Jr. and P. B. Joshi, AlAA J. 18 (1980), 774–778.

    Google Scholar 

  73. L. van Wijngaarden, Theoretical and Applied Mechanics (Hrsg. W. T. Kotier), North-Holland Publ. Company, 1976, S. 249-260.

    Google Scholar 

  74. V. V. Kuznetsov et al., J. Fluid Mech. 85 (1978), 85–96.

    Article  Google Scholar 

  75. A. Mallock, Proc. Roy. Soc. A84 (1910), 391.

    Google Scholar 

  76. G. Heinrich, ZAMM 22 (1942), 117.

    Article  MathSciNet  Google Scholar 

  77. J. Ackeret, Forschung 1 (1930), 63.

    Google Scholar 

  78. I. J. Campbell and A. S. Pitcher, Proc. Roy. Soc. A243 (1958), 534.

    Google Scholar 

  79. T. Scheiwiller und K. Hutter, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich, Nr. 56, 1982: J. Glaciology 29 (1983), 283-285.

    Google Scholar 

  80. L. Noordzij and L. van Wijngaarden, J. Fluid Mech. 66 (1974), 115–143.

    Article  MATH  Google Scholar 

  81. K. Oswatitsch, Phys. Z. 42 (1941), 365–378.

    Google Scholar 

  82. R. Jackson und R. A. Davidson, Int. J. Multiphase Flow 9 (1983), 491–510.

    Article  MATH  Google Scholar 

  83. H. Lang, ZAMM 69 (1989), T631–T632.

    Google Scholar 

  84. B. Schmitt-v. Schubert, GAMM-Tagung Karlsruhe 1989, ZAMM (in Druck).

    Google Scholar 

  85. B. Schmitt-v. Schubert, Ing.-Arch. 58 (1988), 205–214.

    Article  Google Scholar 

  86. R. F. Tangren, C. H. Dodge and H. S. Seifert, J. Appl. Phys. 20 (1949), 637.

    Article  MATH  Google Scholar 

  87. K. Wieghardt, Schiffstechnik 14 (1967), 24.

    Google Scholar 

  88. M. Giot and A. Fritte, Progress in Heat and Mass Transfer 6 (1972), 651–670 (Pergamon Press).

    Google Scholar 

  89. G. B. Wallis, Int. J. Multiphase Flow 6 (1980), 97–112.

    Article  Google Scholar 

  90. C. T. Huey, Can. J. Chem. Eng. 44 (1966), 313–321.

    Article  Google Scholar 

  91. C. T. Huey and R. A. A. Bryant, AlChE J. 13 (1967), 70–76.

    Article  Google Scholar 

  92. G. K. Batchelor, Ann. Rev. Fluid Mech. 6 (1974), 227.

    Article  Google Scholar 

  93. G. I. Taylor, Proc. Roy. Soc. A CCXXVI (1954), 34–39.

    Google Scholar 

  94. D. J. Jeffrey and A. Acrivos, AlChE J. 22 (1976), 417–432.

    Article  Google Scholar 

  95. R. W. O’Brien, J. Fluid Mech. 91 (1979), 17–39.

    Article  MATH  MathSciNet  Google Scholar 

  96. Yu. A. Buyevich and I. N. Shchelchkova, Prog. Aerospace Sci. 18 (1978), 121–150.

    Article  Google Scholar 

  97. P. L. Spedding and V. T. Nguyen, Chem. Eng. Sci. 35 (1980), 779–793.

    Article  Google Scholar 

  98. D. Barnea et al., Int. J. Multiphase Flow 6 (1980), 217–225.

    Article  Google Scholar 

  99. J. H. Witte, J. Fluid Mech. 36 (1969), 4.

    Article  Google Scholar 

  100. F. E. Marble, 5th AGARD Combustion and Propulsion Colloquium (Hrsg. R. P. Hagerty u.a.), Pergamon, 1963.

    Google Scholar 

  101. J. H. Stuhmiller, Int. J. Multiphase Flow 3 (1977), 551–560.

    Article  MATH  Google Scholar 

  102. S. V. Iordanskii and A. G. Kulikovskii, Fluid Dynamics 12 (1977), 499–504.

    Article  Google Scholar 

  103. S. Banerjee and A. M. C. Chan, Int. J. Multiphase Flow 6 (1980), 1–24.

    Article  MATH  Google Scholar 

  104. B. T. Chao, W. T. Sha and S. L. Soo; C. T. Crowe G. B. Wallis; J. A. Bouré; B. T. Chao et al.; W. T. Sha and S. L. Soo: Int. J. Multiphase Flow 4 (1978), 219–223; 225-229; 585-586; 5 (1979), 159-164; 6 (1980), 383-384; Int. J. Heat Mass Transfer 23 (1980), 583-586.

    Article  MATH  Google Scholar 

  105. S. Kakac and F. Mayinger (Eds.), Two-Phase Flows and Heat Transfer, Vol. 1, Hemisphere, 1977; bes. J. M. Delhaye, S. 59-114.

    Google Scholar 

  106. T. N. Veziroglu and S. Kakac (Eds.), Two-Phase Transport and Reactor Safety, Vol. 1, Hemisphere, 1978; bes. S. L. Soo, S. 267-281 und D. Gidaspow, S. 283-297.

    Google Scholar 

  107. F. Durst et al. (Eds.), Two-Phase Momentum, Heat and Mass Transfer, Vol. 1, McGraw, 1979; bes. J. M. Delhaye, S. 3, C. T. Crowe, S. 23 und J. A. Bouré, S. 187.

    Google Scholar 

  108. D. A. Drew and R. T. Lahey; R. I. Nigmatulin; W. T. Hankox et al.; K. H. Ardon; V. N. Nikolaevskii; R. I. Nigmatulin: Int. J. Multiphase Flow 5 (1979), 243–264; 353-385; 6 (1980), 25-40; 295-304; 375-378; 379-382.

    Article  MATH  Google Scholar 

  109. P. S. Gough and F. J. Zwarts, AIAA J. 17 (1979), 17–25.

    Article  MATH  Google Scholar 

  110. H. Immich, ZAMM 60 (1980), 99–107 und 153-160.

    Article  MATH  MathSciNet  Google Scholar 

  111. R. P. Roy and S. Ho, Int. J. Heat Mass Transfer 23 (1980), 1162–1167.

    Article  MATH  Google Scholar 

  112. A. Bedford and D. Drumheller, Int. J. Eng. Sci. 21 (1983), 863–960.

    Article  MATH  MathSciNet  Google Scholar 

  113. L. van Wijngaarden, Proc. XVIIth Int. Congress Theoret. Appl. Mech., Grenoble 1988 (Eds. P. Germain et al.), North-Holland, Amsterdam 1989, pp. 387-406.

    Google Scholar 

  114. J. F. Richardson and W. N. Zaki, Trans. Inst. Chem. Engrs. 32 (1954), 35–53.

    Google Scholar 

  115. M. Ishii, Two-phase Flows and Heat Transfer, Vol. 1 (Eds. S. Kakac and F. Moyinger), Hemisphere, 1977, S. 187-208.

    Google Scholar 

  116. M. Ishii and M. A. Grolmes, Two-Phase Transport and Reactor Safety, Vol. I (Eds. T. N. Veziroglu and S. Kakac), Hemisphere, 1978, S. 299-306.

    Google Scholar 

  117. J. F. Richardson and M. A. S. Jerónimo, Chem. Eng. Sci. 34 (1979), 1419–1422.

    Article  Google Scholar 

  118. Y. Nishimura and T. Ishii, Chem. Eng. Sci. 35 (1980), 1195–1204, 1205-1209.

    Article  Google Scholar 

  119. J. H. Masliyah, Chem. Eng. Sci. 34 (1979), 1166–1168.

    Article  Google Scholar 

  120. C. L. Tien, K. S. Chung and C. P. Liu, Physico-Chemical Hydrodynamics 1 (1980), 195–207, 209-220.

    Google Scholar 

  121. J. F. Davidson, D. Harrison and J. R. F. Guedes de Carvalho, Ann. Rev. Fluid Mech. 9 (1977), 55–86.

    Article  Google Scholar 

  122. J. F. Fanucci, N. Ness and R.-H. Yen, J. Fluid Mech. 94 (1979), 353–367.

    Article  MATH  Google Scholar 

  123. J. R. Grace and J. M. Matsen (Eds.), Fluidization (Proceedings of the 1980 International Fluidization Conference). Plenum Press. 1980.

    Google Scholar 

  124. J. F. Davidson, Proc. XVIIth Int. Congress Theoret. Appl. Mech., Grenoble 1988 (Eds. P. Germain et al.), North-Holland, Amsterdam 1989, pp. 57-72.

    Google Scholar 

  125. T. N. Smith, Chem. Eng. Sci. 33 (1978), 745–749.

    Article  Google Scholar 

  126. P. J. Jones, C. S. Teo and L. S. Leung, Fluidization (Eds. J. R. Grace and J. M. Matsen), Plenum 1980, S. 469-476.

    Google Scholar 

  127. F. W. Staub, Powder Technology 26 (1980), 147–159.

    Article  Google Scholar 

  128. A. Kluwick, Acta Mechanica 26 (1977), 15–46.

    Article  MATH  Google Scholar 

  129. M. J. Lighthill and G. B. Whitham, Proc. Roy. Soc. A229 (1955), 317–345.

    MathSciNet  Google Scholar 

  130. G. J. Kynch, Trans. Faraday Soc. 48 (1952), 166–176.

    Article  Google Scholar 

  131. P. T. Shannon and E. M. Tory, Industrial and Engineering Chemistry 57 (1965), 18–25.

    Article  Google Scholar 

  132. A. E. Boycott, Nature 104 (1920), 532.

    Article  Google Scholar 

  133. W. D. Hill, R. R. Rothfus and K. Li, Int. J. Multiphase Flow 3 (1977), 561–583.

    Article  Google Scholar 

  134. A. Acrivos and E. Herbolzheimer, J. Fluid Mech. 92 (1979), 435–457.

    Article  MATH  Google Scholar 

  135. W. Schneider, J. Fluid Mech. 120 (1982), 323–346.

    Article  MATH  Google Scholar 

  136. U. Schaflinger, Diss. T. U. Wien, 1983; Int. J. Multiphase Flow 11 (1985), 189–199.

    Article  Google Scholar 

  137. E. S. G. Shaqfeh and A. Acrivos, Phys. Fluids 30 (1987), 1905–1914.

    Article  Google Scholar 

  138. R. H. Davis and A. Acrivos, Ann. Rev. Fluid Mech. 17 (1985), 91–118.

    Article  Google Scholar 

  139. W. Schneider, Flow of Real Fluids (Hrsg. G. E. A. Meier und F. Obermeier), Springer Berlin, 1985, S. 326–337.

    Chapter  Google Scholar 

  140. H. Buggisch, ZAUM 64 (1984), T3–T11.

    Article  Google Scholar 

  141. F. H. Bark and A. A. Dahlkild, ZAMM 69 (1989), T531–T539.

    Article  Google Scholar 

  142. K. Horikawa, Ann. Rev. Fluid Mech. 13 (1981), 9–32.

    Article  Google Scholar 

  143. F. Engelund und J. Redsbe, Ann. Rev. Fluid Mech. 14 (1982), 13–37.

    Article  Google Scholar 

  144. J. Gasterstädt, VDI-Forschungsheft 265 (1924), 617 und VDI-Zeitschr. 68 (1924).

    Google Scholar 

  145. O. Molerus and P. Wellmann, Chem. Eng. Sci. 36 (1981), 1623–1632. 1977-1984.

    Article  Google Scholar 

  146. J. A. Ottjes, Chem. Eng. Sci. 33 (1978), 783–786.

    Article  Google Scholar 

  147. H. Mothes, Dissertation, Univ. Karlsruhe, 1982.

    Google Scholar 

  148. W. Barth, ZAMM 25/27 (1947), 157 und Ing.-Arch. 16 (1948), 147.

    Google Scholar 

  149. R. A. Bagnold, Proc. Roy. Soc. A157 (1936), 594.

    Google Scholar 

  150. F. K. Wippermann and G. Gross, Boundary Layer Meteorology 36 (1986), 319–334.

    Article  Google Scholar 

  151. K. J. Richards, J. Fluid Mech. 99 (1980), 597–618.

    Article  MATH  Google Scholar 

  152. W. Merzkirch and K. Bracht, Int. J. Multiphase Flow 4 (1978), 89–95; 5 (1979), 301-312.

    Article  Google Scholar 

  153. B. M. Sumer and B. Oǧuz, J. Fluid Mech. 86 (1978), 109–127.

    Article  Google Scholar 

  154. D. Leighton and A. Acrivos, Chem. Eng. Sci. 41 (1986), 1377–1384.

    Article  Google Scholar 

  155. C. K. Ziegler and W. Lick, Proc. Int. Conf. Fluid Dynamics, Beijing Univ. Press, 1987, pp. 794-799.

    Google Scholar 

  156. B. M. Sumer, B. Oǧuz and R. Deigaard, J. Fluid Mech. 86 (1978), 109, J. Fluid Mech. 109 (1981), 311.

    Article  Google Scholar 

  157. D. H. Caldwell and H. E. Babitt, Am. Inst. Chem. Engrs. 37 (1941), 237. Kurzbericht hierüber von L. Schilling in Forschung 14 (1943), 85.

    Google Scholar 

  158. H. J. Casey, Mitt. d. Preuß. Vers. Anst., Heft 19.

    Google Scholar 

  159. A. Shields, Preuß. Versuch. Anst. f. Wasser-, Erd-und Schiffbau, H. 26 (1936).

    Google Scholar 

  160. E. Meyer-Peter, H. Favre, H. A. Einstein. Schweizer Bauzeitung 103 (1934), Nr. 13.

    Google Scholar 

  161. W. Liebs, Mitt. d. Preuß. Vers. Anst. f. Wasser-, Erd-und Schiffbau, H. 43 (1942).

    Google Scholar 

  162. H. Favre, Annales des points et chaussées 1935, Nr. VIII und 1936, Nr. VII.

    Google Scholar 

  163. H. Schmitt, Mitteil. MPI für Strömungsforschung Göttingen 37 (1966).

    Google Scholar 

  164. H. A. Einstein, R. Müller, Schweizer Arch. f. angew. Wiss. u. Techn. H. 8 (1939).

    Google Scholar 

  165. R. Seifert, Die Bautechnik 20 (1942), 327.

    Google Scholar 

  166. G. de Thiery, C. Matschoß, Die Wasserbaulaboratorien Europas. Berlin 1926, S. 170 und Tafel VI.

    Google Scholar 

  167. M. Munk, NACA-Rep. 114 (1921).

    Google Scholar 

  168. H. Glauert, Rep. a. Mem. 1158 (1928).

    Google Scholar 

  169. G. I. Taylor, Proc. Roy. Soc. 120 (1928), 260 und Rep. a. Mem. 1160.

    Article  MATH  Google Scholar 

  170. W. Tollmien, Ing.-Arch. 9 (1938), 308.

    Article  MATH  Google Scholar 

  171. D. Drew, L. Cheng and R. T. Lahey, Jr., Int. J. Multiphase Flow 5 (1979), 233–242.

    Article  MATH  Google Scholar 

  172. G.-G. Börger und K. Gersten, Forsch. Ing.-Wes. 38 (1972), 87–93.

    Article  Google Scholar 

  173. J. Boussinesq, Théorie analytique de la chaleur. Teil II, Gauthier Villars, Paris, 1903.

    Google Scholar 

  174. V. Bjerknes, Zeitschr. f. d. phys. u. chem. Unterricht 43 (1930), 1.

    Google Scholar 

  175. W. Frössel, Öl und Kohle 39 (1943), 257, vgl. auch Forschung 9.

    Google Scholar 

  176. J. L. Lumley, in: Turbulence (Ed. P. Bradshaw), Springer Berlin, 1976, S. 289–324.

    Google Scholar 

  177. J. L. Lumley, J. Polymer Sci.: Macromolecular Reviews 7 (1973), 263–290.

    Article  Google Scholar 

  178. D. F. McTigue et al., J. Rheology 30 (1986), 1053–1076.

    Article  MATH  Google Scholar 

  179. E. Windhab, Diss. Univ. Karlsruhe, Fortschritt-Ber. VDI Reihe 3 Nr. 118, 1986.

    Google Scholar 

  180. R. D. Reitz and F. U. Bracco, Physics Fluids 25 (1982), 1730–1742.

    Article  MATH  Google Scholar 

  181. F. G. S. Benatt und P. Eisenklam, J. Inst. Fuel 1969, 309-315.

    Google Scholar 

  182. S. K. Garg and J. W. Pritchett, J. Appl. Phys. 46 (1975), 4493–4500.

    Article  Google Scholar 

  183. A. Prosperetti and A. V. Jones, Int. J. Multiphase Flow 10 (1984), 425–440.

    Article  MATH  Google Scholar 

  184. R. C. Givler, Int. J. Multiphase Flow 13 (1987), 717–722.

    Article  Google Scholar 

  185. G. M. Homsy et al., Int. J. Multiphase Flow 6 (1980), 305–318.

    Article  MATH  Google Scholar 

  186. G. Gyarmathy, in [MP 19), Kap. 2.

    Google Scholar 

  187. J. A. Bouré, XVIIth Int. Congress Theoret. Appl. Mech., Grenoble 1988, oder Report SETh/LEF/88-16, Centre d’Etudes Nucleareis de Grenoble, 1988.

    Google Scholar 

  188. K. Schügerl, M. Merz and F. Fetting, Chem. Eng. Sci. 15 (1961), 1–99.

    Article  Google Scholar 

  189. H. P. Greenspan and M. Ungarish, J. Fluid Mech. 157 (1985), 359–373.

    Article  Google Scholar 

  190. U. Schaflinger, A. Köppl and G. Filipczak, ZAMM 86 (1986), T261–T264; Ing.-Archiv 56 (1986), 321-331.

    Google Scholar 

  191. G. Amberg, A. Dahlkild, F. Bark and D. S. Henningson, J. Fluid Mech. 166 (1986), 473–502.

    Article  MATH  Google Scholar 

  192. M. Ungarish, J. Fluid Mech. 193 (1988), 27–51.

    Article  MATH  MathSciNet  Google Scholar 

  193. H. P. Greenspan and M. Ungarish, Int. J. Multiphase Flow 8 (1982), 587–604.

    Article  MATH  Google Scholar 

  194. U. Schaflinger, Int. J. Multiphase Flow 11 (1985), 783–796.

    Article  Google Scholar 

  195. W. Schneider, G. Anestis and U. Schaflinger, Int. J. Multiphase Flow 11 (1985), 419–423.

    Article  Google Scholar 

  196. V. P. Fessas and R. H. Weiland, Int. J. Multiphase Flow 10 (1984), 485–507.

    Article  Google Scholar 

  197. G. Eitelberg and R. K. Clarke, Proc. 9th Australian Fluid Mech. Conf., 1986, Appendix 1.

    Google Scholar 

  198. F. Concha and M. C. Bustos, AIChE J. 33 (1987), 312–315.

    Article  Google Scholar 

  199. F. M. Auzerais, R. Jackson and W. B. Rüssel, J. Fluid Mech. 195 (1988), 437–462.

    Article  Google Scholar 

  200. E. S. G. Shaqfeh and A. Acrivos, Phys. Fluids 29 (1986), 3935–3948.

    Article  MATH  Google Scholar 

  201. P. Prasad, J. Fluid Mech. 150 (1985), 417–426.

    Article  MATH  Google Scholar 

  202. E. S. G. Shaqfeh and A. Acrivos, Phys. Fluids 30 (1987), 960–973.

    Article  Google Scholar 

  203. G. Amberg and A. A. Dahlkild, J. Fluid Mech. 185 (1987), 415–436.

    Article  Google Scholar 

  204. R. W. Lockhart and R. C. Martinelli, Chem. Eng. Prog. 45 (1949), 39–48.

    Google Scholar 

  205. E. Kriegel, Chem.-Ing.-Tech. 39 (1967), 1267–1274.

    Article  Google Scholar 

  206. M. D. Chrisholm and L. A. Sutherland, Proc. Inst. Mech. Eng. 184 (1969), 24–32.

    Article  Google Scholar 

  207. J. M. Mandhane, G. A. Gregory and K. Aziz, Int. J. Multiphase Flow 1 (1974), 537–553.

    Article  Google Scholar 

  208. T. Osinowo and M. E. Charles, Can. J. Chem. Eng. 52 (1974), 25–35.

    Article  Google Scholar 

  209. J. Weisman and S. Y. Kong, Int. J. Multiphase Flow 7 (1981), 271–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Prandtl, L., Oswatitsch, K., Wieghardt, K. (1990). Strömungen mit mehreren Phasen. In: Führer durch die Strömungslehre. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-99491-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-99491-2_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-99492-9

  • Online ISBN: 978-3-322-99491-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics