Skip to main content

A Model for Ternary Projective Relations between Regions

  • Conference paper
Advances in Database Technology - EDBT 2004 (EDBT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2992))

Included in the following conference series:

Abstract

Current spatial database systems offer limited querying capabilities beyond topological relations. This paper introduces a model for projective relations between regions to support other qualitative spatial queries. The relations are ternary because they are based on the collinearity invariant of three points under projective geometry. The model is built on a partition of the plane in five regions that are obtained from projective properties of two reference objects: then, by considering the empty/non empty intersections of a primary object with these five regions, the model is able to distinguish between 31 different projective relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clementini, E., Di Felice, P.: Spatial Operators. ACM SIGMOD Record 29(3), 31–38 (2000)

    Article  Google Scholar 

  2. Clementini, E., Di Felice, P., Hernández, D.: Qualitative representation of positional information. Artificial Intelligence 95, 317–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Clementini, E., Di Felice, P., van Oosterom, P.: A Small Set of Formal Topological Relationships Suitable for End-User Interaction. In: Abel, D.J., Ooi, B.-C. (eds.) SSD 1993. LNCS, vol. 692, pp. 277–295. Springer, Heidelberg (1993)

    Google Scholar 

  4. Dugat, V., Gambarotto, P., Larvor, Y.: Qualitative Theory of Shape and Orientation. In: Proc. of the 16th Int. Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 45–53. Morgan Kaufmann Publishers, Stockolm (1999)

    Google Scholar 

  5. Egenhofer, M.J.: Deriving the composition of binary topological relations. Journal of Visual Languages and Computing 5(1), 133–149 (1994)

    Article  Google Scholar 

  6. Egenhofer, M.J., Herring, J.R.: Categorizing Binary Topological Relationships Between Regions, Lines, and Points in Geographic Databases. In: Department of Surveying Engineering, University of Maine, Orono (1991)

    Google Scholar 

  7. Freksa, C.: Using Orientation Information for Qualitative Spatial Reasoning. In: Frank, A.U., Campari, I., Formentini, U. (eds.) Theories and Models of Spatio-Temporal Reasoning in Geographic Space, pp. 162–178. Springer, Berlin (1992)

    Google Scholar 

  8. Gapp, K.-P.: Angle, Distance, Shape, and their Relationship to Projective Relations. In: Proceedings of the 17th Conference of the Cognitive Science Society, Pittsburgh, PA (1995)

    Google Scholar 

  9. Gapp, K.-P.: From Vision to Language: A Cognitive Approach to the Computation of Spatial Relations in 3D Space. In: Proc. of the First European Conference on Cognitive Science in Industry, Luxembourg, pp. 339–357 (1994)

    Google Scholar 

  10. Goyal, R., Egenhofer, M.J.: Cardinal directions between extended spatial objects. IEEE Transactions on Knowledge and Data Engineering (2003) (in press)

    Google Scholar 

  11. Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS (LNAI), vol. 804. Springer, Heidelberg (1994)

    Book  MATH  Google Scholar 

  12. Isli, A.: Combining Cardinal Direction Relations and other Orientation Relations in QSR. In: AI&M 14-2004, Eighth International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, January 4-6 (2004)

    Google Scholar 

  13. Kray, C., Blocher, A.: Modeling the Basic Meanings of Path Relations. In: Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 384–389. Morgan Kaufmann Publishers, Stockolm (1999)

    Google Scholar 

  14. Kulik, L., et al.: A graded approach to directions between extended objects. In: Proc. of the 2nd Int. Conf. on Geographic Information Science, pp. 119–131. Springer, Boulder (2002)

    Google Scholar 

  15. Kulik, L., Klippel, A.: Reasoning about Cardinal Directions Using Grids as Qualitative Geographic Coordinates. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 205–220. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Moratz, R., Fischer, K.: Cognitively Adequate Modelling of Spatial Reference in Human-Robot Interaction. In: Proc. of the 12th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2000, Vancouver, BC, Canada, pp. 222–228 (2000)

    Google Scholar 

  17. OpenGIS Consortium, OpenGIS Simple Features Specification for SQL (1998)

    Google Scholar 

  18. Retz-Schmidt, G.: Various Views on Spatial Prepositions. AI Magazine 9(2), 95–105 (1988)

    Google Scholar 

  19. Schlieder, C.: Reasoning about ordering. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 341–349. Springer, Heidelberg (1995)

    Google Scholar 

  20. Schmidtke, H.R.: The house is north of the river: Relative localization of extended objects. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 415–430. Springer, Heidelberg (2001)

    Google Scholar 

  21. Scivos, A., Nebel, B.: Double-Crossing: Decidability and Computational Complexity of a Qualitative Calculus for Navigation. In: Montello, D.R. (ed.) COSIT 2001. LNCS, vol. 2205, pp. 431–446. Springer, Heidelberg (2001)

    Google Scholar 

  22. Struik, D.J.: Projective Geometry. Addison-Wesley, London (1953)

    MATH  Google Scholar 

  23. Vorwerg, C., et al.: Projective relations for 3D space: Computational model, application, and psychological evaluation. In: Proc. of the 14th National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial Intelligence Conference, AAAI 1997, IAAI 1997, pp. 159–164. AAAI Press / The MIT Press, Providence, Rhode Island (1997)

    Google Scholar 

  24. Waller, D., et al.: Place learning in humans: The role of distance and direction information. Spatial Cognition and Computation 2, 333–354 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Billen, R., Clementini, E. (2004). A Model for Ternary Projective Relations between Regions. In: Bertino, E., et al. Advances in Database Technology - EDBT 2004. EDBT 2004. Lecture Notes in Computer Science, vol 2992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24741-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24741-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21200-3

  • Online ISBN: 978-3-540-24741-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics