Skip to main content

Pointed Binary Encompassing Trees

  • Conference paper
Algorithm Theory - SWAT 2004 (SWAT 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3111))

Included in the following conference series:

  • 1374 Accesses

Abstract

We show that for any set of disjoint line segments in the plane there exists a pointed binary encompassing treeT, that is, a spanning tree on the segment endpoints that contains all input segments, has maximum degree three, and every vertex vT is pointed, that is, v has an incident angle greater than π. Such a tree can be completed to a minimum pseudo-triangulation. In particular, it follows that every set of disjoint line segments has a minimum pseudo-triangulation of bounded vertex degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free space tilings for kinetic collision detection. In: Proc. 4th WAFR, pp. 83–96 (2001)

    Google Scholar 

  2. Aichholzer, O., Hoffmann, M., Speckmann, B.: Degree bounds for constrained pseudo-triangulations. In: Proc. 15th CCCG, pp. 155–158 (2003)

    Google Scholar 

  3. Aichholzer, O., Huemer, C., Krasser, H.: Triangulations without pointed spanning trees. In: Abstracts of 20th European Workshop Comput. Geom. (2004)

    Google Scholar 

  4. Bespamyatnikh, S.: Computing homotopic shortest paths in the plane. J. Algorithms 49, 284–303 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bose, P., Houle, M.E., Toussaint, G.T.: Every set of disjoint line segments admits a binary tree. Discrete Comput Geom. 26, 387–410 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Bose, P., Toussaint, G.T.: Growing a tree from its branches. J. Algorithms 19, 86–103 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng, S.-W., Janardan, R.: New results on dynamic planar point location. SIAM J. Comput. 21, 972–999 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  9. Efrat, A., Kobourov, S., Lubiw, A.: Computing homotopic shortest paths efficiently. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 411–423. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Goodrich, M., Tamassia, R.: Dynamic ray shooting and shortest paths in planar subdivision via balanced geodesic triangulations. J. Algorithms 23, 51–73 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoffmann, M., Tóth, C.D.: Alternating paths through disjoint line segments. Inform. Proc. Letts. 87, 287–294 (2003)

    Article  MATH  Google Scholar 

  12. Hoffmann, M., Tóth, C.D.: Segment endpoint visibility graphs are Hamiltonian. Comput. Geom. Theory Appl. 26, 47–68 (2003)

    MATH  Google Scholar 

  13. Kettner, L., Kirkpatrick, D., Mantler, A., Snoeyink, J., Speckmann, B., Takeuchi, F.: Tight degree bounds for pseudo-triangulations of points. Comput. Geom. Theory Appl. 25, 1–12 (2003)

    MathSciNet  Google Scholar 

  14. Kirkpatrick, D., Speckmann, B.: Kinetic maintenance of context-sensitive hierarchical representations for disjoint simple polygons. In: Proc. 18th Sympos. Comput. Geom., pp. 179–188. ACM, New York (2002)

    Google Scholar 

  15. Pocchiola, M., Vegter, G.: Minimal tangent visibility graphs. Comput. Geom.Theory Appl. 6, 303–314 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudo-triangulations. Discrete Comput. Geom. 16, 419–453 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rappaport, D.: Computing simple circuits from a set of line segments is NPcomplete. SIAM J. Comput. 18, 1128–1139 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Speckmann, B., Tóth, C.D.: Allocating vertex π-guards in simple polygons via pseudo-triangulations. In: Proc. 14th SODA, pp. 109–118. ACM Press, New York (2003)

    Google Scholar 

  19. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion planning. In: Proc. 41st FOCS, pp. 443–453. IEEE Press, Los Alamitos (2000)

    Google Scholar 

  20. Tóth, C.D.: Alternating paths along orthogonal segments. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 389–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Urabe, M., Watanabe, M.: On a counterexample to a conjecture of Mirzaian, Comput. Geom. Theory Appl. 2, 51–53 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, M., Speckmann, B., Tóth, C.D. (2004). Pointed Binary Encompassing Trees. In: Hagerup, T., Katajainen, J. (eds) Algorithm Theory - SWAT 2004. SWAT 2004. Lecture Notes in Computer Science, vol 3111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27810-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27810-8_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22339-9

  • Online ISBN: 978-3-540-27810-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics