Skip to main content

Robust Extraction of the Optic Nerve Head in Optical Coherence Tomography

  • Conference paper
Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis (MMBIA 2004, CVAMIA 2004)

Abstract

Glaucoma is a leading cause of blindness. While glaucoma is a treatable and controllable disease, there is still no cure available. Early diagnosis is important in order to prevent severe vision loss. Many current diagnostic techniques are subjective and variable. This provides motivation for a more objective and repeatable method. Optical Coherence Tomography (OCT) is a relatively new imaging technique that is proving useful in diagnosing, monitoring, and studying glaucoma. OCT, like ultrasound, suffers from signal dependent noise which can make accurate, automatic segmentation of images difficult. In this article we propose a method to automatically extract the optic nerve and retinal boundaries from axial OCT scans through the optic nerve head. We also propose a method to automatically segment the curve to extract the nerve head profile that is important in diagnosing and monitoring glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang, D., Swanson, E.A., Lin, C.P., et al.: Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  Google Scholar 

  2. Welzel, J., Lankenau, E., Birngruber, R., Engelhardt, R.: Optical coherence tomography of the human skin. J. Am. Acad. Derm. 37, 958–963 (1997)

    Article  Google Scholar 

  3. Brezinski, M.E., Tearney, G.J., Brett, B.E.: Imaging of coronary artery microstructure with optical coherence tomography. American Journal of Cardiology 77, 92–93 (1996)

    Article  Google Scholar 

  4. Hee, M.R., Izatt, J.A., Swanson, E.A., et al.: Optical coherence tomography for ophthalmic imaging. IEEE Engineering in Medicine and Biology 14, 67–76 (1995)

    Article  Google Scholar 

  5. Wang, R., Koozekanani, D., Roberts, C., Katz, S.: Reproducibility of retinal thickness measurements using optical coherence tomography. Investigative Ophthalmology and Visual Science 40, S125–S125 (1999)

    Google Scholar 

  6. Zeiss-Humphrey: Optical coherence tomographer model 3000: User manual (2002)

    Google Scholar 

  7. Puliafito, C.A., Hee, M.R., Schuman, J.S., Fujimoto, J.G. (eds.): Optical Coherence Tomography of Ocular Diseases, 1st edn., Slack, Thorofare (1996)

    Google Scholar 

  8. Boyd, B.F., Luntz, M.H. (eds.): nnovations in the Glaucomas: Etiology, Diagnosis, and Management, 1st edn. Highlights of Ophthalmology Int’l, El Dorado (2002)

    Google Scholar 

  9. Tasman, W., Jaeger, E.A. (eds.): The Willis Eye Hospital Atals of Clinical Ophthalmology, 2nd edn. Lippincott and Williams and Wilkins, Philadelphia (2001)

    Google Scholar 

  10. Bouma, B., Tearney, G.J. (eds.): Handbook of Optical Coherence Tomography, 1st edn. Dekker, USA (2001)

    Google Scholar 

  11. Koozekanani, D., Boyer, K., Roberts, C.: Retinal thickness measurements in optical coherence tomography using a markov boundary model. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, vol. 2, pp. 363–370 (2000)

    Google Scholar 

  12. Schmitt, J.M.: Optical coherence tomography A review. IEEE Journal of Selected Topics in Quantum Electronics 5, 1205–1215 (1999)

    Article  Google Scholar 

  13. Loupas, T., McDicken, W.N., Allan, P.L.: An adpative weighted media filter for speckle suppression in medical ultrasonic images. IEEE Transactions on Circuits and Systems 36, 129–135 (1989)

    Article  Google Scholar 

  14. Czerwinski, R.N., Jones, D.L., Jr, W.D.O.: Ultrasound speckle reduction by directional median filtering. In: Proceeding of the, International Conference on Image Processing, vol. 1, pp. 358–361 (1995)

    Google Scholar 

  15. Suvichakorn, A., Chinrungrueng, C.: Speckle noise reduction for ultrasound images. In: IEEE APCCAS 2000, pp. 430–433 (2000)

    Google Scholar 

  16. Park, J.M., Song, W.J., Pearlman, W.A.: Speckle filtering of sar images based on adaptive windowing. Visual Image Signal Processing, 146, 430–433 (1999)

    Google Scholar 

  17. Xiang, S.H., Zhou, L., Schmitt, J.M.: Speckle noise reduction for optical coherence tomography. In: Proc. SPIE, vol. 3196, pp. 79–88 (1997)

    Google Scholar 

  18. Otsu, N.: A threshold selection method from gray level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9, 62–66 (1979)

    Article  Google Scholar 

  19. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 321–331 (1988)

    Google Scholar 

  20. Berger, M., Mohr, R.: Towards autonomy in active contour models. In: IEEE: 10th International Conference on Pattern Recognition, Piscataway NJ, pp. 847–851 (1990)

    Google Scholar 

  21. Cohen, L.D.: On active contour models and balloons. In: CVGIP - Image Understanding, vol. 53, pp. 211–218 (1991)

    Google Scholar 

  22. Duta, N., Sonka, M.: Segmentation and interpretation or mr brain images using an improved knowledge-based active shape model. In: Duncan, J., Gindi, G. (eds.) Information Processing in Medical Imaging, Berlin, pp. 375–380. Springer, Heidelberg (1997)

    Google Scholar 

  23. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transactions of Image Processing 7, 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Thune, M., Olstad, B., Thune, N.: Edge detection in noisy data using finite mixture distribution analysis. Pattern Recognition 30, 685–699 (1997)

    Article  Google Scholar 

  25. Marr, D., Hildreth, E.: Theory of edge detection. Proceedings Royal Society, London 2076, 187–217 (1980)

    Article  Google Scholar 

  26. Sarkar, S., Boyer, K.: Optimal impulse response zero crossing based edge detectors. Computer Vision Graphics Image Process: Image Understanding 54, 224–243 (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herzog, A., Boyer, K.L., Roberts, C. (2004). Robust Extraction of the Optic Nerve Head in Optical Coherence Tomography. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27816-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22675-8

  • Online ISBN: 978-3-540-27816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics