Skip to main content

The Green Plant as an Intelligent Organism

  • Chapter
Communication in Plants

Abstract

Intelligence is an aspect of complex adaptive behaviour and a term not normally applied to plants. This chapter indicates a change in concept is long overdue and if poets can recognize it (above) so should scientists. Networks that control information flow are described as intelligent and such networks exist in all single living cells and in more complex multicellular organisms. Phosphoneural bacterial networks are briefly considered and these exist in a slightly different molecular but more complex form in higher plant and a nimal cells. Intelligent behaviour involves the whole organism and such integration involves complex communication. Evidence that plants forage and act intelligently in acquiring resources is indicated. The phenotype is actively (not passively) constructed in response to a complex changing environment by decisions that best secure the well-being of the individual plant within the life cycle goal of optimal fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerley DD, Bazzaz FA (1995) Seedling crown orientation and interception of diffuse radiation in tropical forest gaps. Ecology 76:1134–1146

    Article  Google Scholar 

  • Allmann JM (1999) Evolving brains. Scientific American Library, New York

    Google Scholar 

  • Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2003) Biological networks: the tinkerer as engineer. Science 301:1866–1867

    Article  PubMed  CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Induction of increased salt tolerance in Sorghum bicolor by sodium chloride treatment. J Exp Bot 41:29–34

    Article  CAS  Google Scholar 

  • Aphalo PJ, Ballare CL (1995) On the importance of information-acquiring systems in plant-plant interactions. Funct Ecol 9:5–14

    Article  Google Scholar 

  • Arkin A, Ross J (1994) Computational functions in biochemical reaction networks. Biophys J 67:560–578

    Article  PubMed  CAS  Google Scholar 

  • Baillaud L (1962) Mouvements autonomes des tiges, vrilles et autre organs. In: Ruhland W (ed) Encyclopedia of plant physiology: XVII. Physiology of movements, part 2. Springer, Berlin Heidelberg New York, pp 562–635

    Google Scholar 

  • Baker AJM, Grant CJ, Martin MH, Shaw SC, Whitebrook J (1985) Induction and loss of cadmium tolerance in Holcus lanatus and other grasses. New Phytol 102:575–587

    Article  Google Scholar 

  • Ballare CL (1994) Light gaps: sensing the light opportunities in highly dynamic canopy environments. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, New York, pp 73–111

    Google Scholar 

  • Ballare CL (1999) Keeping up with the neighbours: phytochrome sensing and other signaling mechanisms. Trends Plant Sci 4:97–102

    Article  PubMed  Google Scholar 

  • Bazzaz FA (1996) Plants in changing environments. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bell AD (1984) Dynamic morphology: a contribution to plant population ecology. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, MA, pp 48–65

    Google Scholar 

  • Bell G, Lechowicz MJ (1994) Spatial heterogeneity at small scales and how plants respond to it. In Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, New York, pp 391–411

    Google Scholar 

  • Bennet-Clark TA, Ball NG (1951) The diageotropic behaviour of rhizomes. J Exp Bot 2:169–203

    Article  Google Scholar 

  • Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen activated protein kinase signaling network. Science 297:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Bijisma JJE, Groisman EA (2003) Making informed decisions: regulatory interactions between two component systems. Trends Microbiol 11:359–366

    Article  CAS  Google Scholar 

  • Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants — an economic analogy. Annu Rev Ecol Syst 16:363–392

    Google Scholar 

  • Bonabeau E, Dorigo M, Theraulax G (2000) Inspiration for optimisation from social insect behaviour. Nature 406:39–42

    Article  PubMed  CAS  Google Scholar 

  • Bonabeau E, Meyer C (2001) Swarm intelligence. Harv Bus Rev May, 107–114

    Google Scholar 

  • Bonabeau E, Theraulaz G (2000) Swarm smarts. Sci Am 282:72

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity. Adv Genet 13: 115–155

    Google Scholar 

  • Bray D (1995) Protein molecules as computational elements in living cells. Nature 376: 307–312

    Article  PubMed  CAS  Google Scholar 

  • Bray D (2003) Molecular networks: the top down view. Science 301:1864–1865

    Article  PubMed  CAS  Google Scholar 

  • Brown H, Martin MH (1981) Pre-treatment effects of cadmiumon the root growth of Holcus lanatus. New Phytol 89:621–629

    Article  CAS  Google Scholar 

  • Callaway RM, Pennings SC, Richards CL (2003) Phenotypic plasticity and interactions among plants. Ecology 84:1115–1128

    Google Scholar 

  • Carlson JM, Doyle J (2002) Complexity and robustness. Proc Natl Acad Sci USA 99:2538–2545

    Article  PubMed  Google Scholar 

  • Charnov EL (1976) Optimal foraging, the marginal value theorem. Theor Popul Biol 9:129–136

    Article  PubMed  CAS  Google Scholar 

  • Chock PB, Stadtman ER (1977) Superiority of interconvertible enzyme cascades in metabolic regulation: analysis of multicyclic systems. Proc Natl Acad Sci USA 74:2766–2770

    Article  PubMed  CAS  Google Scholar 

  • Corning P (2003) Nature’s magic-synergy in evolution and the fate of humankind. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. Murray, London

    Google Scholar 

  • Darwin C (1882) The power of movement in plants. Murray, London

    Google Scholar 

  • Darwin C (1891) The movements and habits of climbing plants. Murray, London

    Google Scholar 

  • Darwinkel A (1978) Patterns of tillering and grain production of winter wheat at a wide range of plant densities. Neth J Agric Sci 26:383–398

    Google Scholar 

  • Davidson EH, Rast JP, Oliveri P et al (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  PubMed  CAS  Google Scholar 

  • De Castro LN, Timmis JI (2002) Artificial immune systems: a new computational intelligence approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  • De Kroon H, Hutchings MJ (1995) Morphological plasticity in clonal plants: the foraging concept reconsidered. J Ecol 83:143–152

    Article  Google Scholar 

  • Desbiez MO, Kergosein Y, Champagnant P, Thellier M (1984) Memorisation and delayed expression of regulatory message in plants. Planta 160:392–399

    Article  Google Scholar 

  • Desbiez MO, Tort M, Thellier M (1991) Control of a symmetry breaking process in the course of morphogenesis of plantlets of Bidens pilosa. Planta 184:397–402

    Article  Google Scholar 

  • Drew MC, Saker LR (1975) Nutrient supply and the growth of the seminal root system in barley. J Exp Bot 26:79–90

    Article  CAS  Google Scholar 

  • Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546

    Article  PubMed  CAS  Google Scholar 

  • Evans JP, Cain ML (1995) A spatially explicit test of foraging behaviour in a clonal plant. Ecology 76:1147–1155

    Article  Google Scholar 

  • Falik O, Reides P, Gersani M, Novoplansky A (2003) Self, non-self discrimination in roots. J Ecol 91:525–531

    Article  Google Scholar 

  • Farley RA, Fitter AH (1999) Temporal and spatial variation in soil resources in a deciduous woodland. J Ecol 87:688–696

    Article  Google Scholar 

  • Franco M (1986) The influence of neighbours on the growth of modular organisms with an example from trees. Philos Trans R Soc Lond Ser B Biol Sci 313:209–225

    Google Scholar 

  • Franks NR, Dornhaus A, Fitzsimmons JP, Stevens M (2003) Speed versus accuracy in collective decision-making. Proc R Soc Lond Ser B Biol Sci 270:2457–2463

    Article  Google Scholar 

  • Gavin AC, Bosche M, Krause R et al (2002) Functional organisation of the yeast proteome by systematic analysis of protein complexes. Nature 415:541–547

    Article  Google Scholar 

  • Geber MA, Watson MA, De Kroon H (1997) Organ preformation, development and resource allocation in perennials. In Bazzaz FA, Grace J (eds). Plant resource allocation. Academic, London, pp 113–143

    Google Scholar 

  • Gersani M, Abramsky Z, Falik O (1998) Density-dependent habitat selection in plants. Evol Ecol 12:223–234

    Article  Google Scholar 

  • Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z (2001) Tragedy of the commons as a result of root competition. Ecology 89:660–669

    Article  Google Scholar 

  • Gerstain M, Lan N, Jansen R (2002) Integrating interactomes Science 295:284–285

    Article  Google Scholar 

  • Gilroy S, Trewavas AJ (2001) Signal processing and transduction in plant cells: the end of the beginning? Nat Mol Cell Biol Rev 2:307–314

    Article  CAS  Google Scholar 

  • Gleeson SK, Fry JE (1997) Root proliferation and marginal patch value. Oikos 79:387–393

    Article  Google Scholar 

  • Goldberg DE, Barton AM (1992) Patterns and consequences of interspecific competition within natural communities: a review of field experiments with plants. Am Nat 139: 771–801

    Article  Google Scholar 

  • Grasse PP (1977) Evolution of living organisms. Academic, New York

    Google Scholar 

  • Grime JP (1994) The role of plasticity in exploiting environmental heterogeneity. In Caldwell MM, Pearcy RW (eds). Exploitation of environmental heterogeneity by plants. Academic, New York, pp 1–19

    Google Scholar 

  • Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Symposia for Society of Experimental Biology Med XL. Company of Biologists, Cambridge, pp 5–29

    Google Scholar 

  • Gruntman M, Novoplansky A (2004) Physiologically mediated self/non self discrimination mechanism. Proc Natl Acad Sci USA 101:3863–3867

    Article  PubMed  CAS  Google Scholar 

  • Hartnett DC, Bazzaz FA (1983) Physiological integration among intra-clonal ramets in Solidago canadensis. Ecology 64:779–788

    Article  Google Scholar 

  • Hartnett DC, Bazzaz FA (1985) The integration of neighbourhood effects in clonal genets of Solidago candensis. J Ecol 73:415–427

    Article  Google Scholar 

  • Hellingwerf KJ (2005) Bacterial observations: a rudimentary form of intelligence? Trends Microbiol 13:152–158

    Article  PubMed  CAS  Google Scholar 

  • Hellingwerf KJ, Postma PW, Tommassen J, Westerhoff HV (1995) Signal transduction in bacteria: phosphoneural network in Escherichia coli. FEMS Microbiol Rev 16: 309–321

    Article  PubMed  CAS  Google Scholar 

  • Hellmeier H, Erhard M, Schulze ED (1997) Biomass accumulation and water use under arid conditions. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, London, pp 93–113

    Google Scholar 

  • Henrikkson J (2001) Differential shading of branches or whole trees: survival, growth and reproduction. Oecologia 126:482–486

    Article  Google Scholar 

  • Henslow G (1895) The origin of plant structures by self adaptation to the environment. Kegan, Paul, French, Trubner, London

    Google Scholar 

  • Hirshfield J (2005) Each happiness ringed by lions. Blood Axe, Tarset, UK

    Google Scholar 

  • Hjelmfelt A, Ross J (1992) Chemical implementation and thermodynamics of collective neural networks. Proc Natl Acad Sci USA 89:388–391

    Article  PubMed  CAS  Google Scholar 

  • Hjelmfeldt A, Schneider FW, Ross J (1993) Pattern recognition in coupled chemical kinetic systems. Science 260:335–337

    Article  Google Scholar 

  • Hjelmfeldt A, Weinberger ED, Ross J (1991) Chemical implementation of neural networks and Turing machines. Proc Natl Acad Sci USA 88:10983–10987

    Article  Google Scholar 

  • Hjemfelt A, Weinburger ED, Ross J (1992) Chemical implementation of finite state machines. Proc Natl Acad Sci USA 89:383–387

    Article  Google Scholar 

  • Hoffer SM, Westerhoff HV, Hellingwerf KJ, Postma PW, Tommassen J (2001) Autoamplification of a two component regulatory system results in learning behaviour. J Bacteriol 183:4914–4917

    Article  PubMed  CAS  Google Scholar 

  • Holzapfel C, Alpert P (2003) Root co-operation in a clonal plant: connected strawberries segregate roots. Oecologia 134:72–77

    Article  PubMed  Google Scholar 

  • Honda H, Fisher JB (1978) Tree branch angle: maximising effective leaf area. Science 199:888–889

    Article  PubMed  CAS  Google Scholar 

  • Honkanen T, Hanioja E (1994) Why does a branch suffer more after branch-wide than after tree-wide defoliation? Oikos 71:441–450

    Article  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  • Hopfield JJ, Tank DW (1986) Computing with neural circuits: a model. Science 233:625–633

    Article  PubMed  CAS  Google Scholar 

  • Huang S (2000) The practical problems of post-genomic biology. Nat Biotechnol 18:471–472

    Article  PubMed  CAS  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1997) Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can J Bot 75:2146–2157

    Article  Google Scholar 

  • Hutchings MJ, De Kroon H (1994) Foraging in plants, the role of morphological plasticity in resource acquisition. Adv Ecol Res 25:159–238

    Article  Google Scholar 

  • Hutchings MJ (1997) Resource allocation patterns in clonal herbs and their consequences for growth. In: Bazzaz FA, Grace J (eds) Plant resource allocation. Academic, San Diego, pp 161–186

    Google Scholar 

  • Ingolis NT, Murray AW (2002) History matters. Science 297:948–949

    Article  Google Scholar 

  • Jackson RB, Caldwell MM (1989) The timing and degree of root proliferation in fertile soil microsites for three cold desert perennials. Oecologia 81:149–153

    Google Scholar 

  • Jaffe MJ, Shotwell M (1980) Physiological studies on pea tendrils. XI. Storage of tactile sensory information prior to the light activation effect. Physiol Plant 50:78–82

    Article  Google Scholar 

  • Kelly CL (1990) Plant foraging: a marginal value model and coiling response in Cuscuta subinclusa. Ecology 71:1916–1925

    Article  Google Scholar 

  • Kelly CK (1992) Resource choice in Cuscuta europea. Proc Natl Acad Sci USA 89:12194–12197

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Canio W, Keller S, Sinha N (2001) Developmental changes due to long distance movement of a homeo-box fusion transcript in tomato. Science 293:287–293

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  PubMed  CAS  Google Scholar 

  • Kuppers M (1994) Canopy gaps: competitive light interception and economic space filling. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, New York, pp 111–144

    Google Scholar 

  • La Cerra P (2003) The first law of psychology is the second law of thermodynamics: the energetic model of the mind and the generation of human psychological phenomena. Hum Nature Rev 3:440–447

    Google Scholar 

  • La Cerra P, Bingham R (1998) The adaptive nature of the human neuro-cognitive architecture: an alternative model. Proc Natl Acad Sci USA 95:11290–11294

    Article  PubMed  Google Scholar 

  • La Cerra P, Bingham R (2002) The origin of minds. Harmony, New York

    Google Scholar 

  • Laroche A, Geng XM, Singh J (1992) Differentiation of freezing tolerance and vernalisation responses in Cruciferae exposed to a low temperature. Plant Cell Environ 15:439–446.

    Article  Google Scholar 

  • MacDonald SE, Leiffers VJ (1993) Rhizome plasticity and clonal foraging of Calamagrostis canadensis in response to habitat heterogeneity. J Ecol 81:769–776

    Article  Google Scholar 

  • Mahall BE, Callaway RM (1992) Root communication mechanism and intra-community distributions of two Mojave desert shrubs. Ecology 73:2145–2151

    Article  Google Scholar 

  • Maina GG, Brown JS, Gersani M (2002) Intra-plant versus inter-plant competition in beans: avoidance resource matching or tragedy of the commons. Plant Ecol 160:235–247

    Article  Google Scholar 

  • Marx J (2004) Remembrance of winter past. Science 303:1607

    Article  PubMed  CAS  Google Scholar 

  • Maslov S, Sneppen K (2002) Specificity and topology of protein networks. Science 296: 910–913

    Article  PubMed  CAS  Google Scholar 

  • Massa GD, Gilroy S (2003) Touch modulates gravity sensing to regulate the growth of Arabidopsis roots. Plant J 33:435–445

    Article  PubMed  Google Scholar 

  • McAdams HH, Arkin A (1999) It’s a noisy business: genomic regulation at the nanomolar scale. Trends Genet 15:65–69

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • McConnaughay KDM, Bazzaz FA (1991) Is physical space a soil resource? Ecology 72:94–103

    Article  Google Scholar 

  • McConnaughay KDM, Bazzaz FA (1992) The occupation and fragmentation of space: consequences of neighbouring shoots. Funct Ecol 6:711–718

    Article  Google Scholar 

  • McNamara JM, Houston AJ (1996). State dependent life histories. Nature 380:215–220

    Article  PubMed  CAS  Google Scholar 

  • Muth CC, Bazzaz FA (2002a). Tree seedling canopy responses to conflicting photosensory cues. Oecologia 132:197–204

    Article  Google Scholar 

  • Muth CC, Bazzaz FA (2002b) Tree canopy displacement at forest gap edges. Can J For Res 32:247–254

    Article  Google Scholar 

  • Muth CC, Bazzaz FA (2003) Tree canopy displacement and neighbourhood interactions. Can J For Res 33:1323–1330

    Article  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2000) Maze solving by an amoeboid organism. Nature 407:470

    Article  PubMed  CAS  Google Scholar 

  • Novoplansky A (1996) Hierarchy establishment among potentially similar buds. Plant Cell Environ 19:781–786

    Article  Google Scholar 

  • Novoplansky A (2003) Ecological implications of the determination of branch hierarchies. New Phytol 160:111–118

    Article  Google Scholar 

  • Novoplansky A, Cohen D, Sachs T (1990) How Portulaca seedlings avoid their neighbours. Oecologia 82:490–493

    Article  Google Scholar 

  • Okamoto M, Sakai T, Hayashi K (1987) Switching mechanism of a cyclic enzyme system: role as a chemical diode. Biosystems 21:1–11

    Article  PubMed  CAS  Google Scholar 

  • Palladin PI (1918) Plant physiology. Blakiston, Philadelphia

    Google Scholar 

  • Park S, Wolanin PM, Yuzbashyan EA, Silberzan P, Stock JB, Austin RH (2003a) Motion to form a quorum. Science 301:188

    Article  PubMed  CAS  Google Scholar 

  • Park S, Wolanin PM, Yuzbashyan EA, Lin H, Darnton NC, Stock JB, Silberzan P, Austin RH (2003b) Influence of topology on bacterial social interaction. Proc Natl Acad Sci USA 100:13910–13915

    Article  PubMed  CAS  Google Scholar 

  • Peak D, West JD, Messenger SM, Mott KA (2004) Evidence for complex collective dynamics and emergent-distributed computation in plants. Proc Natl Acad Sci USA 101: 981–922

    Article  CAS  Google Scholar 

  • Pearcy RW, Chardin RL, Gross LJ, Mott KA (1994) Photosynthetic utilisation of sunflecks: a temporally patchy resource on a time scale of seconds to minutes. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, New York, pp 175–209

    Google Scholar 

  • Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297:1551–1555

    Article  PubMed  CAS  Google Scholar 

  • Robertson GP, Gross KL (1994) Assessing the heterogeneity of below ground resources: quantifying pattern and scale. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic, New York, pp 237–253

    Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145–180

    CAS  Google Scholar 

  • Schieving F, Poorter H (1999) Carbon gain in a multi-species canopy: the role of specific leaf area and photosynthetic nitrogen use efficiency in the tragedy of the commons. New Phytol 143:201–211

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland, MA

    Google Scholar 

  • Schull J (1990) Are species intelligent? Behav Brain Sci 13:63–108

    Google Scholar 

  • Seeley TD (1995) The wisdom of the hive. The social physiology of honey bee colonies. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Seeley TD, Leven RA (1987) A colony of mind. The beehive as thinking machine. Sciences 27:38–43

    Google Scholar 

  • Silvertown J Gordon GM (1989) A framework for plant behaviour. Annu Rev Ecol Syst 20:349–366

    Article  Google Scholar 

  • Slade AJ, Hutchings MJ (1987) Clonal integration and plasticity in foraging behaviour in Glechoma hederacea. J Ecol 75:1023–1036

    Article  Google Scholar 

  • Stenhouse D (1974) The evolution of intelligence — a general theory and some of its implications. Allen and Unwin, London

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Article  PubMed  CAS  Google Scholar 

  • Strohman RC (2000) Organisation becomes cause in the matter. Nat Biotechnol 18: 575–576

    Article  PubMed  CAS  Google Scholar 

  • Sultan SE (2000) Phenotypic plasticity for plant development, function and life history. Trends Plant Sci 5:537–541

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant physiology, 2nd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Taylor JE, McAinsh MR (2004) Signaling cross-talk in plants: emerging issues. J Exp Bot 55:147–149

    Article  PubMed  CAS  Google Scholar 

  • Thaler DS (1994) The evolution of genetic intelligence. Science 264:1698–1699

    Article  Google Scholar 

  • Tong AHY, Drees B, Nardelli G et al (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321–324

    Article  PubMed  CAS  Google Scholar 

  • Tremmel DC, Bazzaz FA (1993) How neighbour canopy architecture affects target plant performance. Ecology 74:2114–2124

    Article  Google Scholar 

  • Tremmel DC, Bazzaz FA (1995) Plant architecture and allocation in different neighbourhoods: implications for competitive success. Ecology 76:262–271

    Article  Google Scholar 

  • Trewavas AJ (1986) Resource allocation under poor growth conditions. A major role for growth substances in plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Symposia for Society of Experimental Biology Med XL. Company of Biologists, Cambridge, pp 31–77

    Google Scholar 

  • Trewavas AJ (1998) The importance of individuality. In: Loerner HR (ed) Plant responses to environmental stresses. Dekker, New York, pp 27–43

    Google Scholar 

  • Trewavas AJ (1999) Le calcium c’est la vie; calcium makes waves. Plant Physiol 120:1–6

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2000) Signal perception and transduction. In: Buchanan BBB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD, pp 930–988

    Google Scholar 

  • Trewavas AJ (2002) Mindless mastery. Nature 415:841

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2003) Aspects of plant intelligence. Ann Bot 92:1–20

    Article  PubMed  CAS  Google Scholar 

  • Trewavas AJ (2004) Aspects of plant Intelligence: an answer to Firn. Ann Bot 93:353–357

    Article  PubMed  Google Scholar 

  • Trewavas AJ (2005) Plant intelligence. Naturwissenschaften (in press)

    Google Scholar 

  • Turkington R, Aarsen LW (1984) Local scale differentiation as a result of competitive interactions. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology, Sinauer, Sunderland, MA, pp 107–128

    Google Scholar 

  • Turkington R, Klein E (1991) Integration among ramets of Trifolium repens. Can J Bot 69:226–228

    Google Scholar 

  • Turkington R, Sackville Hamilton R, Gliddon C (1991) Within-population variation in localised and integrated responses of Trifoliumrepens to biotically patchy environments. Oecologia 86:183–192

    Article  Google Scholar 

  • Verdus MC, Thellier M, Ripoli C (1997) Storage of environmental signals in flax; their morphogenetic effect as enabled by a transient depletion of calcium. Plant J 12:1399–1410

    Article  CAS  Google Scholar 

  • Vertosick FT, Kelly RH (1991) The immune system as a neural network: a multi-epitope approach. J Theor Biol 150:225–237

    Article  PubMed  CAS  Google Scholar 

  • Vertosick FT (2002) The genius within. Discovering the intelligence of every living thing. Harcourt, New York

    Google Scholar 

  • Warwick K (2001) The quest for intelligence. Piatkus, London

    Google Scholar 

  • Wijesinghe DK, Hutchings MJ (1999) The effects of environmental heterogeneity on the performance of Glechoma hederacea: the interactions between patch contrast and patch scale. J Ecol 87:860–872

    Article  Google Scholar 

  • Yamada T, Okuda T, Abdullah, M, Awang, M, Furukawa A (2000) The leaf development process and its significance for reducing self-shading of a tropical pioneer tree species. Oecologia 125:476–482

    Article  Google Scholar 

  • Zhong GY, Dvorak J (1995) Chromosomal control of the tolerance of gradually and suddenly-imposed salt stress in the Lophopyrum elongatum and wheat genomes. Theor Appl Genet 90:229–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trewavas, A. (2006). The Green Plant as an Intelligent Organism. In: Baluška, F., Mancuso, S., Volkmann, D. (eds) Communication in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28516-8_1

Download citation

Publish with us

Policies and ethics