Skip to main content

Disorders of Heme Biosynthesis

  • Chapter
Inborn Metabolic Diseases

Abstract

X-linked sideroblastic anemia is due to a deficiency of the erythroid form of the first enzyme in the heme biosynthetic pathway, 5-aminolevulinic acid synthase. Characteristics of the disease are variable, but typically include adult onset anemia, ineffective erythropoiesis with formation of ring sideroblasts, iron accumulation and pyridoxine responsiveness.

Porphyrias are metabolic disorders due to deficiencies of other enzymes of this pathway, and are associated with striking accumulations and excess excretion of heme pathway intermediates and their oxidized products. Symptoms and signs of the porphyrias are almost all due to effects on the nervous system or skin. The three most common porphyrias, acute intermittent porphyria, porphyria cutanea tarda and erythropoietic protoporphyria, differ considerably from each other. The first presents with acute neurovisceral symptoms and can be aggravated by some drugs, hormones and nutritional changes, and is treated with intravenous heme and carbohydrate loading. The skin is affected in the latter two although the lesions are usually distinct and treatment is different. Porphyrias are more often manifest in adults than are most metabolic diseases. All porphyrias are inherited, with the exception of porphyria cutanea tarda, which is due to an acquired enzyme deficiency in liver, although an inherited deficiency is a predisposing factor in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Granick S (1966) The induction in vitro of the synthesis of δ-aminolevulinic acid synthetase in chemical porphyria: a response to certain drugs, sex hormones, and foreign chemicals. J Biol Chem 241:1359–1375

    PubMed  CAS  Google Scholar 

  2. Anderson KE, Freddara U, Kappas A (1982) Induction of hepatic cytochrome P-450 by natural steroids: relationships to the induction of δ-aminolevulinate synthase and porphyrin accumulation in the avian embryo. Arch Biochem Biophys 217:597–608

    Article  PubMed  CAS  Google Scholar 

  3. Bekri S, May A, Cotter PD et al (2003) A promoter mutation in the erythroid-specific 5-aminolevulinate synthase (ALAS2) gene causes X-linked sideroblastic anemia. Blood 102:698–704

    Article  PubMed  CAS  Google Scholar 

  4. Cazzola M, May A, Bergamaschi G et al (2000) Familial-skewed X-chromosome inactivation as a predisposing factor for late-onset X-linked sideroblastic anemia in carrier females. Blood 96:4363–4365

    PubMed  CAS  Google Scholar 

  5. Cazzola M, May A, Bergamaschi G et al (2002) Absent phenotypic expression of X-linked sideroblastic anemia in one of 2 brothers with a novel ALAS2 mutation. Blood 100:4236–4238

    Article  PubMed  CAS  Google Scholar 

  6. Anderson KE (2003) The porphyrias. In: Zakim D, Boyer T (eds) Hepatology. Saunders, Philadelphia, chap 11, pp 291–346

    Google Scholar 

  7. Anderson KE, Bloomer JE, Bonkovsky HL et al (2005) Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 142:439–450

    PubMed  Google Scholar 

  8. Poh-Fitzpatrick MB, Lamola AA (1976) Direct spectrophotometry of diluted erythrocytes and plasma: a rapid diagnostic method in primary and secondary porphyrinemias. J Lab Clin Med 87:362–370

    PubMed  CAS  Google Scholar 

  9. Poh-Fitzpatrick MB (1980) A plasma porphyrin fluorescence marker for variegate porphyria. Arch Dermatol 116:543–547

    Article  PubMed  CAS  Google Scholar 

  10. Sassa S (1998) ALAD porphyria. Semin Liver Dis 18:95–101

    PubMed  CAS  Google Scholar 

  11. Shimizu Y, Ida S, Naruto H, Urata G (1978) Excretion of porphyrins in urine and bile after the administration of delta-aminolevulinic acid. J Lab Clin Med 92:795–802

    PubMed  CAS  Google Scholar 

  12. Kauppinen R, Mustajoki P (1992) Prognosis of acute porphyria: occurrence of acute attacks, precipitating factors, and associated diseases. Medicine 71:1–13

    PubMed  CAS  Google Scholar 

  13. Andant C, Puy H, Bogard C et al (2000) Hepatocellular carcinoma in patients with acute hepatic porphyria: frequency of occurrence and related factors. J Hepatol 32:933–939

    Article  PubMed  CAS  Google Scholar 

  14. Human Gene Mutation Database (www.hgmd.org).

    Google Scholar 

  15. Solis C, Martinez-Bermejo A, Naidich TP et al (2004) Acute intermittent porphyria: studies of the severe homozygous dominant disease provides insights into the neurologic attacks in acute porphyrias. Arch Neurol 61:1764–1770

    Article  PubMed  Google Scholar 

  16. Deacon AC, Peters TJ (1998) Identification of acute porphyria: evaluation of a commercial screening test for urinary porphobilinogen. Ann Clin Biochem 35:726–732

    PubMed  CAS  Google Scholar 

  17. Tenhunen R, Mustajoki P (1998) Acute porphyria: treatment with heme. Semin Liver Dis 18:53–55

    PubMed  CAS  Google Scholar 

  18. Bonkovsky HL, Healey BS, Lourie AN, Gerron GG (1991) Intravenous heme-albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol 86:1050–1056

    PubMed  CAS  Google Scholar 

  19. Anderson KE (2003) Approaches to treatment and prevention of human porphyrias. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, vol 14. Academic Press, San Diego, chap 94, pp 247–284

    Google Scholar 

  20. Hahn M, Gildemeister OS, Krauss GL et al (1997) Effects of new anticonvulsant medications on porphyrin synthesis in cultured liver cells: potential implications for patients with acute porphyria. Neurology 49:97–106

    PubMed  CAS  Google Scholar 

  21. Soonawalla ZF, Orug T, Badminton MN (2004) Liver transplantation as a cure for acute intermittent porphyria. Lancet 363:705–706

    Article  PubMed  Google Scholar 

  22. Anderson KE, Spitz IM, Bardin CW, Kappas A (1990) A GnRH analogue prevents cyclical attacks of porphyria. Arch Intern Med 150:1469–1474

    Article  PubMed  CAS  Google Scholar 

  23. Verstraeten L, Van Regemorter N, Pardou A et al (1993) Biochemical diagnosis of a fatal case of Gunther’s disease in a newborn with hydrops-fetalis. Eur J Clin Chem Clin Biochem 31:121–128

    PubMed  CAS  Google Scholar 

  24. Desnick RJ, Glass IA, Xu W et al (1998) Molecular genetics of congenital erythropoietic porphyria. Semin Liver Dis 18:77–84

    Article  PubMed  CAS  Google Scholar 

  25. Piomelli S, Poh-Fitzpatrick MB, Seaman C et al (1986) Complete suppression of the symptoms of congenital erythropoietic porphyria by long-term treatment with high-level transfusions. N Engl J Med 314:1029–1031

    Article  PubMed  CAS  Google Scholar 

  26. Guarini L, Piomelli S, Poh-Fitzpatrick MB (1994) Hydroxyurea in congenital erythropoietic porphyria (letter). N Engl J Med 330:1091–1092

    Article  PubMed  CAS  Google Scholar 

  27. Zix-Kieffer I, Langer B, Eyer D (1996) Successful cord blood stem cell transplantation for congenital erythropoietic porphyria (Gunther’s disease). Bone Marrow Transplant 18:217–220

    PubMed  CAS  Google Scholar 

  28. Fritsch C, Lang K, Bolsen K et al (1998) Congenital erythropoietic porphyria. Skin Pharmacol Appl Skin Physiol 11:347–357

    Article  PubMed  CAS  Google Scholar 

  29. Elder GH (2003) Porphyria cutanea tarda and related disorders. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, vol 14. Academic Press, San Diego, chap 88, pp 67–92

    Google Scholar 

  30. Egger NG, Goeger DE, Payne DA et al (2002) Porphyria cutanea tarda: multiplicity of risk factors including HFE mutations, hepatitis C, and inherited uroporphyrinogen decarboxylase deficiency. Dig Dis Sci 47:419–426

    Article  PubMed  CAS  Google Scholar 

  31. Egger NG, Goeger DE, Anderson KE (1996) Effects of chloroquine in hematoporphyrin-treated animals. Chem Biol Interact 102:69–78

    Article  PubMed  Google Scholar 

  32. Meissner P, Hift RJ, Corrigall A (2003) Variegate porphyria. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, vol 14. Academic Press, San Diego, chap 89, pp 93–120

    Google Scholar 

  33. Da Silva V, Simonin S, Deybach JC et al (1995) Variegate porphyria: diagnostic value of fluorometric scanning of plasma porphyrins. Clin Chim Acta 238:163–168

    Article  PubMed  Google Scholar 

  34. Long C, Smyth SJ, Woolf J et al (1993) Detection of latent variegate porphyria by fluorescence emission spectroscopy of plasma. Br J Dermatol 129:9–13

    Article  PubMed  CAS  Google Scholar 

  35. Cox TM (2003) Protoporphyria. In: Kadish KM, Smith K, Guilard R (eds) Porphyrin handbook, part II, vol 14. Academic Press, San Diego, chap 90, pp 121–149

    Google Scholar 

  36. Went LN, Klasen EC (1984) Genetic aspects of erythropoietic protoporphyria. Ann Hum Genet 48:105–117

    PubMed  CAS  Google Scholar 

  37. Gouya L, Puy H, Robreau AM et al (2002) The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wildtype FECH. Nat Genet 30:27–28

    Article  PubMed  CAS  Google Scholar 

  38. Bloomer J, Wang Y, Singhal A, Risheg H (2005) Molecular studies of liver disease in erythropoietic protoporphyria. J Clin Gastroenterol 39:S167–175

    Article  PubMed  CAS  Google Scholar 

  39. Do KD, Banner BF, Katz E (2002) Benefits of chronic plasmapheresis and intravenous heme-albumin in erythropoietic protoporphyria after orthotopic liver transplantation. Transplantation 73:469–472

    Article  PubMed  Google Scholar 

  40. Poh-Fitzpatrick MB, Wang X, Anderson KE et al (2002) Erythropoietic protoporphyria: altered phenotype after bone marrow transplantation for myelogenous leukemia in a patient heteroallelic for ferrochelatase gene mutations. J Am Acad Dermatol 46:861–866

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Egger, N.G., Lee, C., Anderson, K.E. (2006). Disorders of Heme Biosynthesis. In: Fernandes, J., Saudubray, JM., van den Berghe, G., Walter, J.H. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-28785-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28785-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28783-4

  • Online ISBN: 978-3-540-28785-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics