Skip to main content

Elementary Processes in Complex Plasmas

  • Chapter
Elementary Physics of Complex Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 731))

Abstract

In this chapter, we give the basic description of the main physical processes which create large sinks of plasma by dust grains. We consider first an individual grain embedded in a plasma to study screening, scattering, and absorption of plasma particles. Then we estimate the effect of many grains on other plasma components; in particular, the rate of damping and the scattering introduced by the presence of grains. These are the elementary processes of the creation of plasma fluxes in complex plasmas. These fluxes also inevitably change the ground state of the dust-plasma system, the mode propagation and the grain interactions, which are the subjects of consideration in subsequent chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Allen (1995). Plasma Sources Sci. Technol. 4, 234.

    Article  ADS  Google Scholar 

  2. V. Tsytovich, U. de Angelis, A. Ivlev, and S. Khrapak (2005). Phys. Plasmas 12, 333.

    Google Scholar 

  3. Y. Al’pert, A. Gurevich, and L. Pitaevsky (1965). Space Physics with Artificial Satellites, p. 186 (Consultant Bureaut). London, NY.

    Google Scholar 

  4. J. Laframboise and L. Parker (1973). Phys. Fluids 16, 629–636.

    Article  ADS  Google Scholar 

  5. V. Tsytovich, N. Gusein-Zade, and G. Morfill (2004). IEEE Trans. Sci. Special issue, Dusty Plasmas, April 2004.

    Google Scholar 

  6. V. Tsytovich, G. Morfil, U. Konopka, and H. Thomas (2003). New Journal of Physics 5, 1.

    Article  Google Scholar 

  7. V. Tsytovich (1977). Theory of Turbulent Plasmas, Consultants Bureau, Plenum Publ. Corpor., New York.

    Google Scholar 

  8. J. Goree (1992). Phys. Rev. Lett. 69, 277.

    Article  ADS  Google Scholar 

  9. M. Lampe, V. Gavrishchaka, G. Ganguli, and G. Joyce (2001). Phys. Rev. Lett. 86, 5278.

    Article  ADS  Google Scholar 

  10. S.V. Vladimirov and M. Nambu (1995). Phys. Rev. E 52, R2172.

    Article  ADS  Google Scholar 

  11. S.V. Vladimirov and O. Ishihara (1996). Phys. Plasmas 3, 444.

    Article  ADS  Google Scholar 

  12. O. Ishihara and S.V. Vladimirov (1997). Phys. Plasmas 4, 69.

    Article  ADS  Google Scholar 

  13. P.G. de Gennes (1966). Superconductivity of Metals and Alloys, Benjamin, New York.

    MATH  Google Scholar 

  14. A. Melzer, V. Schweigert, I. Schweigert, A. Homann, S. Peters, and A. Piel (1996). Phys. Rev. E 54, R46.

    Article  ADS  Google Scholar 

  15. V. Schweigert, I. Schweigert, A. Melzer, A. Homann, and A. Piel (1996). Phys. Rev. E 54, 4155.

    Article  ADS  Google Scholar 

  16. S. Homann, A. Melzer, and A. Piel (1996). Phys. Lett. A 223, 389.

    Article  ADS  Google Scholar 

  17. K. Takahashi, T. Oishi, K. Shimomai et al. (1998). Phys. Rev. E 58, 7805.

    Article  ADS  Google Scholar 

  18. A. Melzer, V. A. Schweigert, and A. Piel (1999). Phys. Rev. Lett. 83, 3194.

    Article  ADS  Google Scholar 

  19. V. Steinberg, R. Sütterlin, A. V. Ivlev, and G. Morfill (2001) Phys. Rev. Lett. 86, 4540.

    Article  ADS  Google Scholar 

  20. S.V. Vladimirov and A.A. Samarian (2002). Phys. Rev. E 65, 046416.

    Article  ADS  Google Scholar 

  21. A.A. Samarian, S.V. Vladimirov, and B.W. James (2005). JETP Lett. 82, 858.

    Article  Google Scholar 

  22. G.A. Hebner, M.E. Riley, and B.M. Marder (2003). Phys. Rev. E 68, 016403.

    Google Scholar 

  23. G.A. Hebner and M.E. Riley (2003). Phys. Rev. E 68, 046401.

    Article  ADS  Google Scholar 

  24. G.A. Hebner and M.E. Riley (2004). Phys. Rev. E 69, 026405.

    Article  ADS  Google Scholar 

  25. B. Bolotovskii (1957). Uspekhi, 62, 201.

    Google Scholar 

  26. M. Nambu, S.V. Vladimirov, and P.K. Shukla (1995). Phys. Lett. A 203, 40.

    Article  ADS  Google Scholar 

  27. S. Benkadda, V. Tsytovich, and S.V. Vladimirov (1999). Phys. Rev. E 60, 4708.

    Article  ADS  Google Scholar 

  28. F. Melanso and J. Goree (1995). Phys. Pev. E 52, 5312.

    ADS  Google Scholar 

  29. F. Melanso and J. Goree (1996). Vac.Sci Techol. A 14, 511.

    Article  ADS  Google Scholar 

  30. V. Shveigert (1995). Pis’ma Zh. Tekh. Fiz. (Russia), 21, 69.

    Google Scholar 

  31. D.S. Lemons, M.S. Murillo, W. Daughton, and D. Winske (2000). Phys. Plasmas 7, 2306.

    Article  ADS  Google Scholar 

  32. M. Lampe, G. Joyce, G. Ganguli, and V. Gavrishchaka (2000). Phys. Plasmas 7, 3851.

    Article  ADS  Google Scholar 

  33. A.M. Ignatov (2003). Plasma Phys. Rep. 29, 296.

    Article  ADS  Google Scholar 

  34. V. Tsytovich (1995). Lectures on nonlinear Plasma Kinetics (Springer Verlag, Berlin).

    Google Scholar 

  35. T. Tajima and J. Dawson (1979). Phys.Rev.Lett. 43, 267.

    Article  ADS  Google Scholar 

  36. V. Tsytovich (1973). Publication of Int.Inst For Nuc.Res. Dubna Relativisyic solitons as particle accelerators.

    Google Scholar 

  37. S. Rubin and V. Tsytovich (1964). Zhurn. Tech. Fiz. (Russia), 34, 3.

    Google Scholar 

  38. M. Rabinivich and V. Tsytovich (1977). Proc. P.N.Lebedev Inst 66, 143.

    Google Scholar 

  39. L. Gorbunov and V. Kirsanov (1989). Zh.Exp. Teor. Fiz. 93 509.

    ADS  Google Scholar 

  40. R. Bingham (1997). Fifth European Particle Accelerator Conference 1, 120;

    Google Scholar 

  41. R. Bingham (1998) Phys. Scr. T75, 125.

    Article  ADS  Google Scholar 

  42. G. Bachet, L. Cherigier, and F. Doveil (1995). Phys.Plasmas 2, 1.

    Article  Google Scholar 

  43. Brodin, G. (2001). Physics Scripta, T89, 72.

    Article  ADS  Google Scholar 

  44. D. Winske, W. Daughton, D.S. Lemons, and M.S. Murillo (2000). Phys. Plasmas 7, 2320 (2000).

    Article  ADS  Google Scholar 

  45. S.A. Maiorov, S.V. Vladimirov, and N.F. Cramer (2001). Plasma kinetics around a dust grain in an ion flow, Phys. Rev. E 63, 017401/1–4.

    Article  ADS  Google Scholar 

  46. S. V. Vladimirov, S. A. Maiorov, and N. F. Cramer (2001). Phys. Rev. E 63, 045401.

    Article  ADS  Google Scholar 

  47. S.V. Vladimirov, S.A. Maiorov, and N.F. Cramer (2003). Phys. Rev. E 67, 016407.

    Article  ADS  Google Scholar 

  48. S.V. Vladimirov, S.A. Maiorov, and O. Ishihara (2003). Phys. Plasmas 10, 3867.

    Article  ADS  Google Scholar 

  49. G. Lapenta (1995). Phys. Rev. Lett. 75, 4409.

    Article  ADS  Google Scholar 

  50. G. Lapenta (2000). Phys. Rev. E 62, 1175.

    Article  ADS  Google Scholar 

  51. G. Lapenta and G. Brackbill (1998). Phys. Scr. T75 264.

    Article  ADS  Google Scholar 

  52. M. Lampe, M. Joyce, and G. Ganguli (2001). Phys. Scr. T89, 106.

    Article  ADS  Google Scholar 

  53. V. Schweigert, M. Melzer, and A. Piel (2000). J. Phys. IV, Proc. (France), 10, 421.

    Google Scholar 

  54. A. Melzer, V. Schweigert, and A. Piel (1996). Phys. Scr. 61, 494.

    Article  ADS  Google Scholar 

  55. D. Winske, W. Daughton, D. Lemons, M. Murillo, and W. Shanachan (2000). Proc. Int.Conf.Phys.Dusty Pl. ICPDP-1999 (Elsevier Amsterdam), 513.

    Google Scholar 

  56. S.V. Vladimirov (1994). Phys. Plasmas 1, 2762.

    Article  ADS  Google Scholar 

  57. K. Watanabe (2000). Proceeding ICPDP-1999 Conference, p. 58.

    Google Scholar 

  58. A. Melzer, T. Trottenberg, and A. Piel (1994). Phys.Lett. A 191, 301.

    Article  ADS  Google Scholar 

  59. J. Allen, B. Annaratone, U. de Angelis (2000). J. Plasma Phys. 63, 299.

    Article  ADS  Google Scholar 

  60. G. Lapenta (1999). Phys.Plasmas 6, 1442.

    Article  ADS  Google Scholar 

  61. J. Daugherty, R. Porteous, M. Kilgore, and D. Graves (1992). J.Appl.Phys. 4, 219.

    Google Scholar 

  62. O. Havnes, C. Goertz, G. Morfill, and E. Grun (1987). J. Geophys. Res. 92, 2281.

    Article  ADS  Google Scholar 

  63. V. Tsytovich and U. de Angelis (2000). Phys. Plasmas 7, 554.

    Article  MathSciNet  ADS  Google Scholar 

  64. P. Ricci, G. Lapenta, U. de Angelis, and V. Tsytovich (2001). Phys. Plasmas 8, 769.

    Article  ADS  Google Scholar 

  65. A. Boushoule et al. (1991). J.Appl.Phys. 70 1991.

    Article  ADS  Google Scholar 

  66. B. Walch, M. Horanyi, and S. Robertson (1994). IEEE Trans. Plasma Sci. 22, 97.

    Article  ADS  Google Scholar 

  67. M. Horanyi and R. Robertson (2000). Proc. Int.Conf.Phys.Dusty Pl. ICPDP-1999 (Elsevier Amsterdam), p. 313.

    Google Scholar 

  68. R. Bingham and V. Tsytovich (2001). IEEE Trans. Plasma Sci. 29, 158–63.

    Article  ADS  Google Scholar 

  69. S.V. Vladimirov, K. Ostrikov, and A.A. Samarian (2005). Physics and Applications of Complex Plasmas, Imperial College, London.

    Book  MATH  Google Scholar 

  70. A.A. Samarian and S.V. Vladimirov (2003). Phys. Rev. E 67, 066404.

    Article  ADS  Google Scholar 

  71. I. Bernstein and I. Rabinovich (1959). Phys. Fluids 2, 112.

    Article  ADS  MATH  Google Scholar 

  72. L. Pitaevsky (1966). JETP (Rus.ed.), 43, 27.

    Google Scholar 

  73. W. Steel, D. Law, B. Annaratone, and J. Allen (1997). XXIII International Conference on Phenomena in Ionized Gases, ICPIG Proceedings. Contributed Papers, 1, 194.

    Google Scholar 

  74. V. Tsytovich, U. de Angelis, and R. Bingham (1989). J.Plasma Phys. 42, 429.

    Article  ADS  Google Scholar 

  75. Ya. Khodataev, R. Bingham, V. Tarakanov, and V. Tsytovich (1996). Fiz. Plazmy (Russia), 22, 1028.

    Google Scholar 

  76. V. Tsytovich, G. Morfill, and H. Thomas (2002). Plasma Phys.Rep. 28, 623.

    Article  ADS  Google Scholar 

  77. C. Nairn, B. Annaratones, and J. Allen. (1998). Plasma Sources Sci. Technol. 7, 478.

    Article  ADS  Google Scholar 

  78. R. Sagdeev, D. Usikov, and G. Zaslavsky Nonlinear Physics: From the Pendulum to Turbulence and Chaos, Harwood Academic Publishers, New York.

    Google Scholar 

  79. J. Goree (1994). Sci. Technol. 3, 400.

    Google Scholar 

  80. S. Khrapak, A. Ivlev, and G. Morfill (2003). Europhysical Conference Abstracts 27A, O-1.1B.

    Google Scholar 

  81. V. Tsytovich, U. de Angelis, A. Ivlev, and S. Khrapak (2005). Phys. Plasmas, 12, 469.

    Google Scholar 

  82. M. Barnes, J. Keller, J. Forster, J. O’Neal, and J. Coulytas (1992). Phys.Rev.Lett. 68, 313.

    Article  ADS  Google Scholar 

  83. N. Kilgore, J. Daugherty, R. Porteous, and D. Graves (1993). J.Appl.Phys. 73, 7195.

    Article  ADS  Google Scholar 

  84. V.N. Tsytovich, S.V. Vladimirov, G.E. Morfill, and J. Goree (2001). Phys. Rev. E 63, 056609.

    Article  ADS  Google Scholar 

  85. V. Tsytovich (2001). Phys. Scr. Vol. T89, 89.

    Article  ADS  Google Scholar 

  86. G. Morfill, G. and V. Tsytovich Phys. Plasmas 7, 235.

    Google Scholar 

  87. D. Samsonov, and J. Goree (1999). Phys. Rev. E 59, 1047.

    Article  ADS  Google Scholar 

  88. G. Morfill, H. Thomas, U. Konopka, and M. Zusic (1999). Phys. Plasmas 6, 1769.

    Article  ADS  Google Scholar 

  89. H. Thomas, D. Goldbeck, T. Hagl, A. Ivlev, U. Konopka, G. Morfill, H. Rothermel, R. Sutterlin, and M. Zuzic (2001). Phys. Scr. Vol. T89 16–19.

    Article  ADS  Google Scholar 

  90. A. Nefedov, G. Morfill, V. Fortov et al. (2003). New Journal of Physics 5, 33.

    Article  ADS  Google Scholar 

  91. J. Goree, G. Morfill, V.N. Tsytovich, and S.V. Vladimirov (1999). Phys. Rev. E 59, 7055.

    Article  ADS  Google Scholar 

  92. V.N. Tsytovich, S.V. Vladimirov, and G.E. Morfill (2004). Phys. Rev. E 70, 066408.

    Article  ADS  Google Scholar 

  93. S.V. Vladimirov, V.N. Tsytovich, and G.E. Morfill (2005). Phys. Plasmas 12, 052117.

    Article  ADS  Google Scholar 

  94. V.N. Tsytovich, S.V. Vladimirov, and G.E. Morfill (2006). JETP, 102, 334.

    Article  ADS  Google Scholar 

  95. G. Morfill, H. Thomas, U. Konopka, and M. Zusic (1999). Phys. Plasmas, 6, 1769.

    Article  ADS  Google Scholar 

  96. R. Talbot R. Cheng., D. Schefer, and A. Willis (1980). Fluid Mech. 101, 737.

    Article  ADS  Google Scholar 

  97. O. Havnes, T. Nitter V. Tsytovich, G. Morfill, and G. Hartquist (1994). Plasma Sources Sci. Technol. 3, 448.

    Article  ADS  Google Scholar 

  98. D. Law, W. Steel, B. Annaratone, J. Allen (1999). XXIII International Conference on Phenomena in Ionized Gases, ICPIG Proceedings, Contributed Papers, 1, 192.

    Google Scholar 

  99. V.N. Tsytovich, S.V. Vladimirov, O.S. Vaulina, O.F. Petrov, and V.E. Fortov (2006). Phys. Plasmas, 13, 032305.

    Article  ADS  Google Scholar 

  100. V.N. Tsytovich, S.V. Vladimirov, O.S. Vaulina, O.F. Petrov, and V.E. Fortov (2006). Phys. Plasmas 13, 032306.

    Article  ADS  Google Scholar 

  101. L. Landau and E. Lifshitz (1977). Statistical Physics, Pergamon Press, Oxford, New York.

    Google Scholar 

  102. V. Tsytovich (2000). Plasma Physics Reports 26, 712.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsytovich, V.N., Morfill, G.E., Vladimirov, S.V., Thomas, H.M. (2008). Elementary Processes in Complex Plasmas. In: Elementary Physics of Complex Plasmas. Lecture Notes in Physics, vol 731. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29003-2_3

Download citation

Publish with us

Policies and ethics