Skip to main content

Data Mining Approaches to Diffuse Large B–Cell Lymphoma Gene Expression Data Interpretation

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3181))

Included in the following conference series:

Abstract

This paper presents a comprehensive study of gene expression patterns originating from a diffuse large B–cell lymphoma (DLBCL) database. It focuses on the implementation of feature selection and classification techniques. Thus, it firstly tackles the identification of relevant genes for the prediction of DLBCL types. It also allows the determination of key biomarkers to differentiate two subtypes of DLBCL samples: Activated B–Like and Germinal Centre B–Like DLBCL. Decision trees provide knowledge–based models to predict types and subtypes of DLBCL. This research suggests that the data may be insufficient to accurately predict DLBCL types or even detect functionally relevant genes. However, these methods represent reliable and understandable tools to start thinking about possible interesting non–linear interdependencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, A.A., Eisen, M., Botstain, D., Brown, P.O., Staudt, L.M.: Probing lymphocyte biology by genomic-scale gene expression analysis. Journal of clinical immunology (18), 373–379 (1998)

    Google Scholar 

  2. Alizadeh,M. B. Eisen, R. E. Davis, C.Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick, H. Sabet, truc Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T.Moore, J. H. Jr., L. Lu, D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner, W. Dennis D, J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein, P. O. Brown, and L. M. Staudt, “Distinct types of diffuse large b–cell lymphoma identified by gene expression profiling,” Nature, vol. 403, pp. 503–511, 2000.

    Google Scholar 

  3. Azuaje, F.: A computational neural approach to support discovery of gene function and classes of cancer. IEEE Transactions on biomedical engineering 48(3), 332–339 (2001)

    Article  Google Scholar 

  4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth International Group, Belmont (1984)

    MATH  Google Scholar 

  5. Gordon, D.: Classification. Chapman & Hall/CRC (1999)

    Google Scholar 

  6. Gowda, K.C., Krishna, G.: Agglomerative clustering using the concept of mutual nearest neighborhood. Pattern Recognition 10, 105–112 (1977)

    Article  Google Scholar 

  7. Hall, M.A.: Correlation–based feature selection for machine learning. Ph.D., Department of Computer Science, University of Waikato, New Zealand (1998)

    Google Scholar 

  8. Han, J., Kamber, M.: Data Mining – Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  9. Harris, N.L., Jaffe, E.S., Diebold, J., Flandrin, G., Muller-Hermelink, H.K., Vardiman, J., Lister, T.A., Bloomfield, C.D.: World health organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: Report of the clinical advisory committee meeting–airlie house, virginia (November 1997); Journal of clinical oncology 17, 3835–3849 (1999)

    Google Scholar 

  10. Hooper, C.W., Holman, R.C., Clarke, M.J., Chorba, T.L.: Trends in non–hodgkin’s lymphoma (NHL) and HIV–associated NHL deaths in the united states. American Journal of Hematology 66, 159–166 (2001)

    Article  Google Scholar 

  11. Kira, K., Rendell, L.: A practical approach to feature selection. In: Proceedings of the Ninth International Conference on Machine Learning, pp. 249–256 (1992)

    Google Scholar 

  12. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In: Proceedings of European Conference on Machine Learning, Springer, Heidelberg (1994)

    Google Scholar 

  13. Levi, F., Lucchini, F., Negri, E., Vecchia, C.L.: Trends in mortaligy from non–hodgkin’s lymphomas. Leukemia Research 26, 903–908 (2002)

    Article  Google Scholar 

  14. Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric attributes. In: Proceedings of the Seventh IEEE International Conference on Tools with Artificial Intelligence (1995)

    Google Scholar 

  15. Rivest, R.L.: Learning decision lists. Machine Learning 1(2), 229–246 (1987)

    Google Scholar 

  16. Shipp, M.A., Ross, K.N., Tamayo, P., Weng, A.P., Kutor, J.L., Aguiar, R.C.T., Gaasenbeek, M., Angelo, M., Reich, M., Pinkus, G.S., Ray, T.S., Koval, M.A., Last, K.W., Norton, A., Lister, T.A., Mesirov, J., Neuberg, D.S., Lander, E.S., Aster, J.C., Golub, T.R.: Diffuse large b–cell lymphoma outcome prediction by gene–expression profiling and supervised machine learning. Nature Medicine 8(1), 68–74 (2002)

    Article  Google Scholar 

  17. The Non-Hodgkin’s Lymphoma Classification Project, A clinical evaluation of the international of the international lymphoma study group. classification of nonhodgkin’s lymphoma. Blood 89(11), 3909–3918 (1997)

    Google Scholar 

  18. Witten, H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  19. Wolowiec, D., Bergera, F., Ffrench, P., Byron, P., Ffrench, M.: CDK1 and cyclin A expression is linked to cell proliferation and associated with prognosis in non– hodgkin’s lymphomas. Leuk Lymphoma 1-2, 147–157 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aguilar-Ruiz, J.S., Azuaje, F., Riquelme, J.C. (2004). Data Mining Approaches to Diffuse Large B–Cell Lymphoma Gene Expression Data Interpretation. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2004. Lecture Notes in Computer Science, vol 3181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30076-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30076-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22937-7

  • Online ISBN: 978-3-540-30076-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics