Skip to main content

Approximation Schemes for Deal Splitting and Covering Integer Programs with Multiplicity Constraints

  • Conference paper
Approximation and Online Algorithms (WAOA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3351))

Included in the following conference series:

Abstract

We consider the problem of splitting an order for R goods, R ≥ 1, among a set of sellers, each having bounded amounts of the goods, so as to minimize the total cost of the deal. In deal splitting with packages (DSP), the sellers offer packages containing combinations of the goods; in deal splitting with price tables (DST), the buyer can generate such combinations using price tables. Our problems, which often occur in online reverse auctions, generalize covering integer programs with multiplicity constraints (CIP), where we must fill up an R-dimensional bin by selecting (with bounded number of repetitions) from a set of R-dimensional items, such that the overall cost is minimized. Thus, both DSP and DST are NP-hard, already for a single good, and hard to approximate for arbitrary number of goods.

In this paper we focus on finding efficient approximations, and exact solutions, for DSP and DST instances where the number of goods is some fixed constant. In particular, we show that when R is fixed both DSP and DST can be optimally solved in pseudo-polynomial time, and develop polynomial time approximation schemes (PTAS) for several subclasses of instances of practical interest. Our results include a PTAS for CIP in fixed dimension, and a more efficient (combinatorial) scheme for CIP  ∞ , where the multiplicity constraints are omitted. Our approximation scheme for CIP  ∞  is based on a non-trivial application of the fast scheme for the fractional covering problem, proposed recently by Fleischer [Fl-04].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, M.M., Manning, E.G., Shoja, G.C., Khan, S.: Heuristic Solutions for the Multiple-Choice Multi-Dimension Knapsack Problem. In: Int. Conference on Computational Science, vol. (2), pp. 659–668 (2001)

    Google Scholar 

  2. Bichler, M., Kalagnanam, J., Lee, H.S., Lee, J.: Winner Determination Algorithms for Electronic Auctions: A Framework Design. In: EC-Web, pp. 37–46 (2002)

    Google Scholar 

  3. Chandra, A.K., Hirschberg, D.S., Wong, C.K.: Approximate Algorithms for Some Generalized Knapsack Problems. Theoretical Computer Science 3, 293–304 (1976)

    Article  MathSciNet  Google Scholar 

  4. Chekuri, C., Khanna, S.: A PTAS for the Multiple Knapsack Problem. In: Proc. of SODA, pp. 213–222 (2000)

    Google Scholar 

  5. Chvátal, V.: A Greedy Heuristic for the Set Covering Problem. Math. Oper. Res. 4, 233–235 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dobson, G.: Worst-case Analysis of Greedy for Integer Programming with Nonnegative Data. Math. of Operations Research 7, 515–531 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frieze, A.M., Clarke, M.R.B.: Approximation Algorithms for the m-dimensional 0-1 knapsack problem: worst-case and probabilistic analyses. European J. of Operational Research 15(1), 100–109 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Feige, U.: A threshold of ln n for approximating set cover. In: Proc. of 28th Symposium on Theory of Computing, pp. 314–318 (1996)

    Google Scholar 

  9. Fleischer, L.: A Fast Approximation Scheme for Fractional Covering Problems with Variable Upper Bounds. In: Proc. of SODA, pp. 994–1003 (2004)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Ibaraki, T.: Approximate algorithms for the multiple-choice continuous knapsack problems. J. of Operations Research Society of Japan 23, 28–62 (1980)

    MATH  MathSciNet  Google Scholar 

  12. Ibaraki, T., Hasegawa, T., Teranaka, K., Iwase, J.: The Multiple Choice Knapsack Problem. J. Oper. Res. Soc. Japan 21, 59–94 (1978)

    MATH  MathSciNet  Google Scholar 

  13. Kolliopoulos, S.G.: Approximating covering integer programs with multiplicity constraints. Discrete Applied Math. 129(2–3), 461–473 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolliopoulos, S.G., Young, N.E.: Tight Approximation Results for General Covering Integer Programs. In: Proc. of FOCS, pp. 522–528 (2001)

    Google Scholar 

  15. Kothari, A., Parkes, D., Suri, S.: Approximately-Strategyproof and Tractable Multi-Unit Auctions. In: Proc. of ACM-EC (2003)

    Google Scholar 

  16. Lawler, E.L.: Combinatorial Optimization: Networks and Metroids. Holt, Reinhart and Winston (1976)

    Google Scholar 

  17. Lueker, G.S.: Two NP-complete problems in nonnegative integer programming. Report # 178, Computer science Lab., Princeton Univ. (1975)

    Google Scholar 

  18. Rajagopalan, S., Vazirani, V.V.: Primal-Dual RNC Approximation Algorithms for Set Cover and Covering Integer Programs. SIAM J. Comput. 28(2), 525–540 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shachnai, H., Shmueli, O., Sayegh, R.: Approximation Schemes for Deal Splitting and Covering Integer Programs with Multiplicity Constraints, full version, http://www.cs.technion.ac.il/~hadas/PUB/ds.ps

  20. Shachnai, H., Tamir, T.: Approximation Schemes for Generalized 2-dimensional Vector Packing with Application to Data Placement. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 165–177. Springer, Heidelberg (2003)

    Google Scholar 

  21. Srinivasan, A.: An Extension of the Lovász Local Lemma, and its Applications to Integer Programming. In: Proc. of SODA, pp. 6–15 (1996)

    Google Scholar 

  22. Srinivasan, A.: Improved Approximation Guarantees for Packing and Covering Integer Programs. SIAM J. Comput. 29(2), 648–670 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shmueli, O., Golany, B., Sayegh, R., Shachnai, H., Perry, M., Gradovitch, N., Yehezkel, B.: Negotiation Platform. International Patent Application WO 02077759 (2001-2002)

    Google Scholar 

  24. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

  25. Wolfstetter, E.: Auctions: An Introduction. J. of Economic Surveys 10, 367–420 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shachnai, H., Shmueli, O., Sayegh, R. (2005). Approximation Schemes for Deal Splitting and Covering Integer Programs with Multiplicity Constraints. In: Persiano, G., Solis-Oba, R. (eds) Approximation and Online Algorithms. WAOA 2004. Lecture Notes in Computer Science, vol 3351. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-31833-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-31833-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24574-2

  • Online ISBN: 978-3-540-31833-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics