Skip to main content

Sulfur Cycling in Boreal Peatlands: from Acid Rain to Global Climate Change

  • Chapter
Boreal Peatland Ecosystems

Part of the book series: Ecological Studies ((ECOLSTUD,volume 188))

12.7 Conclusions

Over the last 6 decades, atmospheric S deposition has peaked in some parts of the world, while simultaneously it continues to impact other regions of the globe. During this same time, we have increased considerably our ecosystem-level understanding of the consequences of atmospheric S deposition on aquatic, terrestrial and wetland systems. Biogeochemical cycling of S is highly complex in ecosystems having predominantly anaerobic zones, yet even in well-drained upland forests, we now know that many of the processes thought only to be dominant in wetlands must be considered to accurately evaluate S fluxes and cycling patterns.

In terms of trace-gas emissions, elevated inputs of atmospheric S deposition may cause an increase in rates of sulfate reduction, but may not cause a shift in peatland C stores from that of net C sink to net C source. The response of peatlands in large parts of Europe and North America, where dramatic decreases in atmospheric S have occurred, may be delayed as the currently large S pools in these peats will continue to provide free SO4 2− for years to come. The net long-term effect then of declining rates of atmospheric S deposition on peatland carbon stores is likely to enhance their potential emissions of CH4, but not of CO2. Current increases in the severity of atmospheric S deposition in large parts of Asia, which contain the fourth-largest global peatland area, are a matter of concern. Specifically, we have shown in North America and in Europe that if a considerable proportion of atmospherically deposited S, thought to be immobilized in soils, is remobilized, acidification of the environment has the potential to continue long after industrial emissions have been eliminated.

Despite our advances, presently we have little data on S cycling dynamics in boreal regions with regard to trace-gas emissions, S stores, and S-Hg interactions, and especially for one region in particular, Siberia. Exploration of Siberian peatlands will undoubtedly reaffirm, readjust, and revitalize our scientific understanding on the role of S on future aspects of ecosystem function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abate T (1995) Swedish scientists take acid rain research to developing nations. Bioscience 45:738–740

    Google Scholar 

  • Aherne J, Posch M, Dillon PJ, Henriksen A (2004) Critical loads of acidity for surface waters in South Central Ontario, Canada: regional application of the first order acidity balance (FB) model. Water Air Soil Pollut Focus 4:25–36

    CAS  Google Scholar 

  • Alewell C, Gehre M (1999) Patterns of stable S isotopes in a forested catchment as indicators for biological S turnover. Biogeochemistry 47:319–333

    CAS  Google Scholar 

  • Alewell C, Novák M (2001) Spotting zones of dissimilatory sulfate reduction in a forested catchment: the 34S–35S approach. Environ Pollut 112:369–377

    PubMed  CAS  Google Scholar 

  • Alewell C, Mitchell MJ, Likens GE, Krouse HR (1999) Sources of stream sulfate at the Hubbard Brook Experimental Forest: long-term analyses using stable isotopes. Biogeochemistry 44:281–299

    Google Scholar 

  • Armbruster M, Mengistu A, Feger KH (2003) The biogeochemistry of two forested catchments in the Black Forest and the eastern Ore Mountains (Germany). Biogeochemistry 65:341–368

    CAS  Google Scholar 

  • Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–359

    CAS  Google Scholar 

  • Badr O, Probert SD (1994) Atmospheric sulphur: trends, sources, sinks and environmental impacts. Appl Energy 47:1–67

    Google Scholar 

  • Bartlett KB, Harriss RC (1993) Review and assessment of methane emissions from wetlands. Chemosphere 26:261–320

    CAS  Google Scholar 

  • Bayley SE, Behr RS, Kelly CA (1986) Retention and release of S from a freshwater wetland. Water Air Soil Pollut 31:101–114

    CAS  Google Scholar 

  • Beier C, Moldan F, Wright RF (2003) Terrestrial ecosystem recovery-modelling the effects of reduced acidic inputs and increased inputs of sea salts induced by global change. Ambio 32:275–282

    PubMed  Google Scholar 

  • Bhatti N, Streets DG, Foell WK (1992) Acid rain in Asia. Environ Manage 16:541–562

    Google Scholar 

  • Blodau C, Moore TR (2003) Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biol Biochem 35:535–547

    CAS  Google Scholar 

  • Branfireun BA, Roulet NT (2002) Controls on the fate and transport of methylmercury in a boreal headwater catchment, northwestern Ontario, Canada. Hydrol Earth Syst Sci 6:785–794

    Google Scholar 

  • Branfireun BA, Hilbert D, Roulet NT (1998) Sinks and sources of methylmercury in a boreal catchment. Biogeochemistry 41:277–291

    CAS  Google Scholar 

  • Branfireun BA, Roulet NT, Kelly CA, Rudd JWM (1999) In situ sulphate stimulation of mercury methylation in a boreal peatland: toward a link between acid rain and methylmercury contamination in remote environments. Global Biogeochem Cycles 13:743–750

    CAS  Google Scholar 

  • Branfireun BA, Bishop K, Roulet NT, Granberg G, Nilsson M (2001) Mercury cycling in boreal ecosystems: the long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophys Res Lett 28:1227–1230

    CAS  Google Scholar 

  • Bridgham SD, Johnston CA, Pastor J, Updegraff K (1995) Potential feedbacks of northern wetlands on climate change. Bioscience 45:262–274

    Google Scholar 

  • Bridgham SD, Updegraff K, Pastor J (1998) Carbon, nitrogen and phosphorus mineralization in northern wetlands. Ecology 79:1545–1561

    Google Scholar 

  • Bridgham SD, Ping CL, Richardson JL, Updegraff K (2001) Soils of peatlands: histosols and gelisols. In: Richardson JL, Vepraskas MJ (eds) Wetland soils: genesis, hydrology, landscapes, and classification. CRC, Boca Raton, pp 343–370

    Google Scholar 

  • Brimblecombe P, Hammer C, Rhode H, Ryaboshapko A, Boutron CF (1989) Human influence on the sulphur cycle. In: Brimblecombe P, Leub AY (eds) Evolution of the global biogeochemical sulphur cycle. Wiley, New York, pp 77–121

    Google Scholar 

  • Brown KA (1985) Sulphur distribution and metabolism in waterlogged peat. Soil Biol Biochem 17:39–45

    CAS  Google Scholar 

  • Brown KA, McQueen JF (1985) Sulphate uptake from surface water by peat. Soil Biol Biochem 17:411–420

    CAS  Google Scholar 

  • Cameron CC (1968) Peat. In: Mineral resources of the Appalachian region. US Geological Survey professional paper 580, US Government Printing Office, Washington, DC

    Google Scholar 

  • Casagrande DJ, Indowu G, Friedman A, Rickert P, Schlenz D (1979) H2S incorporation in coal precursors: Origins of sulfur in coal. Nature 282:599–600

    CAS  Google Scholar 

  • Chapman SJ, Ken-ichi K, Tsuruta H, Minami K (1996) Influence of temperature and oxygen availability on the flux of volatile sulphur compounds from wetlands: a comparison of peat and paddy soils. Soil Sci Plant Nutr 42:279–288

    CAS  Google Scholar 

  • Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between ecosystems and the atmosphere. Wiley, Chichester, pp 37–58

    Google Scholar 

  • Crill PM, Butler JH, Cooper DJ, Novelli PC (1995) Standard analytical methods for measuring trace gases in the environment. In: Matson PA, Harriss RC (eds) Biogenic trace gases: measuring emissions from soil and water. Blackwell, Oxford, pp 164–205

    Google Scholar 

  • Davis DW, Detro RA (1992) Fire and brimstone, the history of melting Louisiana’s sulphur. Louisiana Geological Survey, Baton Rouge

    Google Scholar 

  • Dise N, Verry E (2001) Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry 53:143–160

    CAS  Google Scholar 

  • Driscoll CT, Likens GE, Buso D, Church MR (1998) Recovery of soil and surface waters in the northeastern US from decreases in atmospheric deposition of sulfur. Water Air Soil Pollut 105:306–316

    Google Scholar 

  • Eimers MC, Dillon PJ (2002) Climate effects on sulphate flux from forested catchments in south-central Ontario. Biogeochemistry 61:337–355

    CAS  Google Scholar 

  • Fauque GD (1995) Ecology of sulfate reducing bacteria. In: Barton L (ed) Sulfate reducing bacteria. Plenum, New York, pp 217–235

    Google Scholar 

  • Fitzgerald JW, Andrew TL, Swank WT (1984) Availability of carbon-bonded sulfur for mineralization in forest soils. Can J For Res 14:839–843

    CAS  Google Scholar 

  • Fuller RD, Mitchell MJ, Krouse HR, Wyskowski BJ, Driscoll CH (1986) Stable sulfur isotope ratios as a tool for interpreting ecosystem sulfur dynamics. Water Air Soil Pollut 28:163–171

    CAS  Google Scholar 

  • Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Global budgets of atmospheric methane: Results from a three-dimensional global model synthesis. J Geophys Res 96:13033–13065

    CAS  Google Scholar 

  • Galloway ME, Branfireun BA (2004) Mercury dynamics of a temperate forested wetland. Sci Total Environ 325:239–254

    PubMed  CAS  Google Scholar 

  • Gauci V, Dise N, Fowler D (2002) Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Global Biogeochem Cycles 16:1–12

    Google Scholar 

  • Gauci V, Matthews E, Dise N, Walter B, Koch D, Granberg G, Vile M (2004) Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc Natl Acad Sci USA 101:12583–12587

    PubMed  CAS  Google Scholar 

  • Gebauer G, Giesemann A, Schulze ED, Jäger HJ (1994) Isotope ratios and concentrations of sulfur and nitrogen in needles and soils of Picea abies stands as influenced by atmospheric deposition of sulfur and nitrogen compounds. Plant Soil 164:267–281

    CAS  Google Scholar 

  • Giblin AE, Wieder RK (1992) Sulphur cycling in marine and freshwater wetlands. In: Howarth R, Stewart JWB, Ivanov MV (eds) Sulfur cycling on the continents: wetlands, terrestrial ecosystems, and associated water bodies. Wiley, New York, pp 85–124

    Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    CAS  Google Scholar 

  • Gore AJP (1983) Ecosystems of the world 4A. Mires, swamp, bog, fen and moor. General studies. Elsevier, Amsterdam

    Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Google Scholar 

  • Granberg G, Sundh I, Svensson BH, Nilsson M (2001) Effects of temperature, and nitrogen and sulfur deposition on methane emission from a boreal mire. Ecology 82:1982–1998

    Google Scholar 

  • Hedin LO, von Fischer JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703

    Google Scholar 

  • Heyes A, Moore TR, Rudd JWM, Dugoua JJ (2000) Methyl mercury in pristine and impounded boreal peatlands, Experimental Lakes Area, Ontario. Can J Fish Aquat Sci 57:2211–2222

    CAS  Google Scholar 

  • Houle D, Carignan R, Ouimet R (2001) Soil organic sulfur dynamics in a coniferous forest. Biogeochemistry 53:105–124

    CAS  Google Scholar 

  • Houle D, Carignan R, Roberge J (2004) The transit of 35SO4 2− and 3H2O added in situ to soil in a boreal coniferous forest. Water Air Soil Pollut Focus 4:501–518

    CAS  Google Scholar 

  • Howarth RW, Jorgensen BB (1984) Formation of 35S-labelled elemental sulfur and pyrite in coastal marine sediments (Limfjorden and Kysing Fjord, Denmark) during short term 35SO4 2− reduction measurements. Geochim Cosmochim Acta 48:1807–1818

    CAS  Google Scholar 

  • Howarth R, Teal JM (1979) Nitrification potentials at different pH values in peat samples from various layers of a drained mire. Am Nat 116:862–872

    Google Scholar 

  • Howarth RW, Teal JM (1980) Energy flow in a salt marsh ecosystem: the role of reduced inorganic sulfur compounds. Am Nat 116:862–872

    CAS  Google Scholar 

  • Jenkinson, DS, Adams, DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351:304–306

    CAS  Google Scholar 

  • Johnson AC, Wood (1993). Sulphate-reducing bacteria in deep aquifer sediments of the London Basin: their role in anaerobic mineralization of organic matter. J Appl Bacteriol 75: 190–197

    CAS  Google Scholar 

  • Joosten H, Clarke D (2002) Wise use of peatlands, background and principles including a framework for decision-making. International Mire Conservation Group and the International Peat Society, Saarijärvi, Finland

    Google Scholar 

  • Kiene RP, Hines ME (1995) Microbial formation of dimethyl sulfide in anoxic Sphagnum peat. Appl Environ Microbiol 61:2720–2726

    PubMed  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM (2000) Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66:2430–2437

    PubMed  CAS  Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effects of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    CAS  Google Scholar 

  • Krouse HR (1986) Sulfur isotopes in our environment. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry. Elsevier, New York, pp 435–471

    Google Scholar 

  • Krouse HR (1989) Sulfur isotope studies of the pedosphere and biosphere. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, Berlin Heidelberg New York, pp 424–444

    Google Scholar 

  • Krouse HR, Grinenko VA (eds) (1991) Stable isotopes: natural and anthropogenic sulphur in the environment, SCOPE 43. Wiley, Chichester

    Google Scholar 

  • Krouse HR, Tabatabai MA (1986) Stable sulfur isotopes. In: Tabatabai MA, Beaton JD, Fox RL (eds) Agronomy monograph 27. American Society of Agronomy, Crop Science Society of Americas, Soil Science Society of America, Madison, pp 169–205

    Google Scholar 

  • Krouse HR, Stewart JWB, Grinenko VA. (1991) Pedosphere and biosphere. In: Krouse HR, Grinenko VA (eds) Stable isotopes: natural and anthropogenic sulphur in the environment. Scope 43. Wiley, Chichester, pp 267–306

    Google Scholar 

  • Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32:199–205

    CAS  Google Scholar 

  • Lang K, Lehtonen M, Martikainen P (1993) Nitrification potentials at different pH values in peat samples from various layers of a drained mire. Geomicrobiol J 11:141–147

    CAS  Google Scholar 

  • Likens GE, Driscoll CT, Buso MJ, Mitchell MJ, Lovett GM, Bailey SW, Siccama TG, Reiners WA, Alewell C (2002) The biogeochemistry of sulfur at Hubbard Brook. Biogeochemistry 60:235–316

    CAS  Google Scholar 

  • Liu R, Want Q, Lu X, Fang F, Wang Y (2003) Distribution and speciation of mercury in the peat bog of Xiaoxing’an Mountain, northeastern China. Environ Pollut 124:39–46

    PubMed  CAS  Google Scholar 

  • Lomans BP, Smolders JP, Intven LM, Pol A, Op den Camp HJM, van der Drift C (1997) Role of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 63:4741–4747

    PubMed  CAS  Google Scholar 

  • Lomans BP, Op den Camp HJM, Pol A, van der Drift C, Vogels GD (1999) Role of methanogens and other bacteria in degradation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl Environ Microbiol 65:2116–2121

    PubMed  CAS  Google Scholar 

  • Lovely DR, Klug MJ (1983) Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Appl Environ Microbiol 45:187–192

    Google Scholar 

  • Mandernack KW, Lynch L, Krouse HR, Morgan MD (2000). Sulfur cycling in wetland peat of the New Jersey Pinelands and its affect on stream water chemistry. Geochim Cosmochim Acta 64:3949–3964

    CAS  Google Scholar 

  • Mayer B, Fritz P, Prietzel J, Krouse HR (1995a) The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl Geochem 10:161–173

    CAS  Google Scholar 

  • Mayer B, Feger KH, Giesemann A, Jager HJ (1995b) Interpretation of sulfur cycling in two catchments in the Black Forest (Germany) using stable sulfur and oxygen isotope data. Biogeochemistry 30:31–58

    CAS  Google Scholar 

  • McDonald BR (1982) Wetlands of West Virginia, location and classification. West Virginia Department of Natural Resources, Elkins

    Google Scholar 

  • Mitchell MJ, Krouse HR, Mayer B, Stam AC, Zhang YM (1998) Use of stable isotopes in evaluating biogeochemistry of forest ecosystems In: Kendall C, McDonnell JJ (eds) Isosope tracers in catchment hydrology. Elsevier, Amsterdam, pp 489–518

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New York

    Google Scholar 

  • Morth C-M, Torssander P, Kusakabe M, Hultberg H (1999) Sulfur isotope values in a forested catchment over four years: evidence for oxidation and reduction processes. Biogeochemistry 44:51–71

    CAS  Google Scholar 

  • Nedwell, DB (1984) The input and mineralisation of organic C in anaerobic aquatic sediments. Adv Microb Ecol 7:93–131

    CAS  Google Scholar 

  • Nedwell DB, Watson A (1995) CH4 production, oxidation and emission in a UK ombrotrophic peat bog: influence of SO4 2− from acid rain. Soil Biol Biochem 27:893–903

    CAS  Google Scholar 

  • Novák M, Wieder RK (1992) Inorganic and organic sulfur profiles in nine Sphagnum peat bogs in the United States and Czechoslovakia. Water Air Soil Pollut 65:353–369

    Google Scholar 

  • Novák M, Wieder RK, Schell WR (1994). Sulfur during early diagenesis in Sphagnum peat: insights from ?δ 34S ratio profiles in 210Pb-dated peat cores. Limnol Oceanogr 39:1172–1185

    Google Scholar 

  • Novák M, Bottrell SH, Fottová D, Bu_ek F, Groscheová H, _ak K (1996) Sulfur isotope signals in forest soils of central Europe along an air pollution gradient. Environ Sci Technol 30:3473–3476

    Google Scholar 

  • Novák M, Buzek F, Adamová M (1999) Vertical trends in δ13C, δ15N and δ34S ratios in bulk Sphagnum peat. Soil Biol Biochem 31:1343–1346

    Google Scholar 

  • Novák M, Kirchner JW, Groscheová H, Havel M, Cerny J, KrejcÍ R, Buzek F (2000) Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SOx. Geochim Cosmochim Acta 64:367–383

    Google Scholar 

  • Novák M, Bottrell SH, Prechová E (2001) Sulfur isotope inventories of atmospheric deposition, spruce forest floor and living Sphagnum along a NW-SE transect across Europe. Biogeochemistry 53:23–50

    Google Scholar 

  • Novák M, Michel RL, Prechová E, _tepánová (2004) The missing flux in a 35S budget for the soils of a small polluted catchment. Water Air Soil Pollut Focus 4:517–529

    Google Scholar 

  • Nriagu JO, Holdway DA, Coker RD (1987) Biogenic sulfur and the acidity of rainfall in remote areas of Canada. Science 237:1189–1192

    CAS  Google Scholar 

  • O’Meara M (1998) Acid rain threats vary. In: Brown LA, Renner M, Flavin C (eds) Vital signs the environmental trends that are shaping our future. Norton, New York, pp 134–137

    Google Scholar 

  • Pirainen S, Finer L, Starr M (1998) Canopy and soil retention of nitrogen deposition in a mixed boreal forest in eastern Finland. Water Air Soil Pollut 105:165–174

    Google Scholar 

  • Schlesinger WH (1997) Biogechemistry-an analysis of global change, 2nd edn. Academic, New York

    Google Scholar 

  • Schoenau JJ, Bettany JR (1989) 34S natural abundance variations in prairie and boreal forest soils. J Soil Sci 40:397–413

    CAS  Google Scholar 

  • Shannon RD, White JR (1996) The effects of spatial and temporal variations in acetate and sulfate on methane cycling in two Michigan peatlands. Limnol Oceanogr 41:435–443

    CAS  Google Scholar 

  • Singh BR (1984) Sulfate sorption by acid forest soils: 3. Desorption of sulfate from adsorbed surfaces as a function of time, desorbing ion, pH, and amount of adsorption. Soil Sci 138:346–353

    CAS  Google Scholar 

  • Skyllberg U, Qian J, Frech W, Xia K, Bleam WF (2003) Distribution of mercury, methylmercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry 64:53–76

    CAS  Google Scholar 

  • Spratt HG, Morgan MD, Good RE (1987) Sulfate reduction in peat from a New Jersey pinelands cedar swamp. Appl Environ Microbiol 53:1406–1411

    PubMed  CAS  Google Scholar 

  • St Louis VL, Rudd JWM, Kelly CA, Beaty KG, Bloom NS, Flett RJ (1994) Importance of wetlands as sources of methylmercury to boreal forest ecosystems. Can J Fish Aquat Sci 51:1065–1076

    CAS  Google Scholar 

  • St Louis VL, Rudd JWM, Kelly CA, Beaty KG, Flett RJ, Roulet NT (1996) Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environ Sci Technol 30:2719–2729

    CAS  Google Scholar 

  • Swain EB, Engstrom DR, Brigham ME, Henning TA, Brezonik PL (1992) Increasing rates of atmospheric mercury deposition in midcontinental North America. Science 257:784–787

    CAS  Google Scholar 

  • Turetsky MR, Wieder RK (2001) A direct approach for quantifying organic matter lost as a result of peatland wildfire. Can J For Res 31:363–366

    Google Scholar 

  • Urban NR, Eisenreich SJ, Grigal DF (1989) Sulfur cycling in a forested Sphagnum bog in northern Minnesota. Biogeochemistry 7:81–109

    Google Scholar 

  • van Stempvoort DR, Fritz P, Reardon EJ (1992) Sulfate dynamics in upland forest soils, central and southern Ontario, Canada: stable isotope evidence. Appl Geochem 7:159–175

    Google Scholar 

  • Venkataraman C, Chandramouli B, Patwardhan C (1999) Anthropogenic sulphate aerosol from India: estimates of burden and direct radiative forcing. Atmos Environ 33:3225–3235

    CAS  Google Scholar 

  • Vile MA, Wieder RK (1994) Alkalinity generation from Iron reduction versus sulfate reduction in wetlands constructed for acid mine drainage treatment. Water Air Soil Pollut Focus 69:425–441

    Google Scholar 

  • Vile MA, Bridgham S, Wieder RK (2003a) Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecol Appl 13:720–734

    Google Scholar 

  • Vile MA, Bridgham S, Wieder RK, Novák M (2003b) Atmospheric sulfur deposition alters pathways of gaseous C production in peatlands Global Biogeochem Cycles 17:1058.DOI 10.1029/2002GB001966

    Google Scholar 

  • Vitt DH, Bayley SE, Jin TL (1995) Seasonal variation in water chemistry over a bogrich fen gradient in continental western Canada. Can J Fish Aquat Sci 52:587–606

    CAS  Google Scholar 

  • Watson A, Nedwell DB (1998) Methane production and emission from peat: the influence of anions (sulphate, nitrate) from acid rain. Atmos Environ 32:3239–3245

    CAS  Google Scholar 

  • Wieder RK, Lang GE (1986) Fe, Al, Mn, and S chemistry of Sphagnum peat in four peatlands with different metal and sulfur input. Water Air Soil Pollut 29:209–320

    Google Scholar 

  • Wieder RK, Lang GE (1988) Cycling of inorganic and organic sulfur in peat from Big Run Bog, West Virginia. Biogeochemistry 5:221–242

    CAS  Google Scholar 

  • Wieder RK, Yavitt JB, Lang GE (1990) Methane production and sulfate reduction in two Appalachian peatlands. Biogeochemistry 10:81–104

    Google Scholar 

  • Winfrey MR, Rudd JWM (1990) Environmental factors affecting the formation of methylmercury in low pH lakes. Environ Toxicol Chem 9:853–869

    CAS  Google Scholar 

  • Xun L, Campbell NER, Rudd JWM (1987) Measurements of specific rates of net methyl mercury production in the water column and surface sediments of acidified and circumneutral lakes. Can J Fish Aquat Sci 44:750–757

    CAS  Google Scholar 

  • Zhang Y, Mitchell MJ, Christ M, Likens GE, Krouse HR (1998) Stable sulfur isotopes at Hubbard Brook Experimental Forest, New Hampshire. Biogeochemistry 41:259–275

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vile, M.A., Novák, M. (2006). Sulfur Cycling in Boreal Peatlands: from Acid Rain to Global Climate Change. In: Wieder, R.K., Vitt, D.H. (eds) Boreal Peatland Ecosystems. Ecological Studies, vol 188. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-31913-9_12

Download citation

Publish with us

Policies and ethics