Skip to main content

Sensory-Motor Coordination in Gaze Control

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Included in the following conference series:

  • 1524 Accesses

Abstract

In the field of artificial intelligence, there is a considerable interest in the notion of sensory-motor coordination as an explanation for intelligent behaviour. However, there has been little research on sensory-motor coordination in tasks that go beyond low-level behavioural tasks. In this paper we show that sensory-motor coordination can also enhance performance on a high-level task: artificial gaze control for gender recognition in natural images. To investigate the advantage of sensory-motor coordination, we compare a non-situated model of gaze control (incapable of sensory-motor coordination) with a situated model of gaze control (capable of sensory-motor coordination). The non-situated model of gaze control shifts the gaze according to a fixed set of locations, optimised by an evolutionary algorithm. The situated model of gaze control determines gaze shifts on the basis of local inputs in a visual scene. An evolutionary algorithm optimises the model’s gaze control policy. From the experiments performed, we may conclude that sensory-motor coordination contributes to artificial gaze control for the high-level task of gender recognition in natural images: the situated model outperforms the non-situated model. The mechanism of sensory-motor coordination establishes dependencies between multiple actions and observations that are exploited to optimise categorisation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)

    Google Scholar 

  2. O’Regan, J.K., Noë, A.: A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences 24(5), 883–917 (2001)

    Google Scholar 

  3. Nolfi, S.: Power and the limits of reactive agents. Neurocomputing 42, 119–145 (2002)

    Article  MATH  Google Scholar 

  4. Nolfi, S., Marocco, D.: Evolving robots able to visually discriminate between objects with different size. International Journal of Robotics and Automation 17(4), 163–170 (2002)

    Google Scholar 

  5. Beer, R.D.: The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243 (2003)

    Article  Google Scholar 

  6. van Dartel, M.F., Sprinkhuizen-Kuyper, I.G., Postma, E.O., van den Herik, H.J.: Reactive agents and perceptual ambiguity. Adaptive Behavior (in press)

    Google Scholar 

  7. Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biological Cybernetics 90(3), 218–228 (2004)

    Article  MATH  Google Scholar 

  8. Viola, P., Jones, M.J.: Robust real-time object detection. Cambridge Research Laboratory, Technical Report Series (2001)

    Google Scholar 

  9. Bruce, V., Young, A.: In the eye of the beholder. Oxford University Press, Oxford (2000)

    Google Scholar 

  10. Moghaddam, B., Yang, M.H.: Learning gender with support faces. IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 707–711 (2002)

    Article  Google Scholar 

  11. Calder, A.J., Burton, A.M., Miller, P., Young, A.W., Akamatsu, S.: A principal component analysis of facial expressions. Vision research 41(9), 1179–1208 (2001)

    Article  Google Scholar 

  12. Cohen, P.: Empirical Methods for Artificial Intelligence. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  13. Forsyth, D.A., Ponce, J.: Computer Vision: a Modern Approach. Prentice Hall, New Jersey (2003)

    Google Scholar 

  14. Köppen, M., Nickolay, B.: Design of image exploring agent using genetic programming. In: Proc. IIZUKA 1996, Iizuka, Japan, pp. 549–552 (1996)

    Google Scholar 

  15. Peng, J., Bhanu, B.: Closed-loop object recognition using reinforcement learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(2), 139–154 (1998)

    Article  Google Scholar 

  16. Schlesinger, M., Parisi, D.: The agent-based approach: A new direction for computational models of development. Developmental review 21, 121–146 (2001)

    Article  Google Scholar 

  17. Sprague, N., Ballard, D.: Eye movements for reward maximization. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems, vol. 16. MIT Press, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Croon, G., Postma, E.O., van den Herik, H.J. (2005). Sensory-Motor Coordination in Gaze Control. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics