Skip to main content

Modeling Customer Satisfaction: A Comparative Performance Evaluation of Covariance Structure Analysis Versus Partial Least Squares

  • Chapter
  • First Online:
Handbook of Partial Least Squares

Abstract

Partial least squares (PLS) estimates of structural equation model path coefficients are believed to produce more accurate estimates than those obtained with covariance structure analysis (CVA) using maximum likelihood estimation (MLE) when one or more of the MLE assumptions are not met. However, there exists no empirical support for this belief or for the specific conditions under which it will occur. MLE-based CVA will also break down or produce improper solutions whereas PLS will not. This study uses simulated data to estimate parameters for a model with five independent latent variables and one dependent latent variable under various assumption conditions. Data from customer satisfaction studies were used to identify the form of typical field-based survey distributions. Our results show that PLS produces more accurate path coefficients estimates when sample sizes are less than 500, independent latent variables are correlated, and measures per latent variable are less than 4. Method accuracy does not vary when the MLE multinormal distribution assumption is violated or when the data do not fit the theoretical structure very well. Both procedures are more accurate when the independent variables are uncorrelated, but MLE estimations break down more frequently under this condition, especially when combined with sample sizes of less than 100 and only two measures per latent variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. C., & Gerbing, D. W. (1984). The effect of sampling error on convergence, improper solutions, and goodness-of-fit indices for maximum likelihood confirmatory factor analysis. Psychometrika, 49, 155–173.

    Article  Google Scholar 

  • Arbuckle, J. (1994). AMOS – Analysis of moment structures. Psychometrika, 59(1), 135–137.

    Article  MathSciNet  Google Scholar 

  • Asher, H. B. (1976). Causal modeling. Beverly Hills: Sage

    Google Scholar 

  • Bagozzi, R. P. (1977). Structural equation lModels in experimental research. Journal of Marketing Research, 14, 209–226.

    Article  Google Scholar 

  • Bagozzi, R. P. (1980). Causal models in marketing. New York, NY: Wiley.

    Google Scholar 

  • Bagozzi, R. P. (1982). Introduction to the special issue on causal modeling. Journal of Marketing Research, 19, 403.

    Article  Google Scholar 

  • Bagozzi, R. P. (1984). A prospectus for theory construction in marketing. Journal of Marketing, 48, 11–29.

    Article  Google Scholar 

  • Bagozzi, R. P., & Yi, Y. (1989). On the use of structural equation models in experimental designs. Journal of Marketing Research, 26, 271–284.

    Article  Google Scholar 

  • Bagozzi, R. P, & Yi, Y. (1994). Advanced topics in structural equation models. In R. P. Bagozzi (Ed.), Advanced Methods of Marketing Research (pp. 1–78). Cambridge: Blackwell Business.

    Google Scholar 

  • Bagozzi, R. P., Yi, Y., & Singh, S. (1991). On the use of structural equation models in experimental designs: two extensions. International Journal of Research in Marketing, 8, 125–140.

    Article  Google Scholar 

  • Barclay, D. W. (1991). Interdepartmental conflict in organizational buying: the impact of the organizational context. Journal of Marketing Research, 28, 145–159.

    Article  Google Scholar 

  • Barclay, D. W., Higgins, C. A., & Thompson, R. (1995). The partial least squares (pls) approach to causal modeling: personal computer adoption and use as an illustration. Technology Studies, 2, 285–323.

    Google Scholar 

  • Barroso, C., Carrión, G. C., & Roldán, J. L. (2010). Applying maximum likelihood and PLS on different sample sizes: studies on SERVQUAL model and employee behavior model. In V. Esposito Vinzi, W. Chin, J. Henseler, & H. Wang (Eds.), Handbook Partial Least Squares. Berlin: Springer.

    Google Scholar 

  • Beardon, W. O., Sharma, S., & Teel, J. (1982). Sample size effects on chi square and other statistics used in evaluating causal models. Journal of Marketing Research, 19, 425–30.

    Article  Google Scholar 

  • Bentler, P. M. (1995). EQS structural equations program manual. Encino, California: Multivariate Software.

    Google Scholar 

  • Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and non-normality. Amsterdam: Sociometric Research Foundation.

    Google Scholar 

  • Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), Modern Methods for Business Research (pp. 295–336). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Chin, W. W. (2001). PLS-Graph Manual Version 3.0, http://disc-nt.cba.uh.edu/chin.

    Google Scholar 

  • Chin, W. W., & Newsted, P. R. (1998). Structural equation modeling analysis with small samples using partial least squares. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 307–341). Newberry Park, California: Sage.

    Google Scholar 

  • Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: results from a monte carlo simulation study and an electronic-mail emotion/adoption study. Information System Research, 14(2), 189–217.

    Article  Google Scholar 

  • Chou, C. P., & Bentler, P. M. (1995). Estimates and tests in structural equation modeling. In R. H. Hoyle (Ed.), Structural equation modeling: concepts, issues, and applications (pp. 37–55). Newberry Park, California: Sage.

    Google Scholar 

  • Dillon, W. R., Kumar, A., & Mulani, N. (1987). Offending estimates in covariance structure analysis: comments on the causes of and solutions to heywood cases. Psychological Bulletin, 101, 126–135.

    Article  Google Scholar 

  • Dijkstra, T. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22, 67–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Duncan, O. D. (1966). Path analysis sociological examples. American Journal of Sociology, 72, 1–16.

    Article  Google Scholar 

  • Falk, R. F., & Miller, N. B. (1992). A Primer for Soft Modeling. Akron, Ohio: University of Akron Press.

    Google Scholar 

  • Fleishman, A. I. (1978). A method for simulating non-normal distributions. Psychometrika, 43(4), 521–532.

    Article  MATH  Google Scholar 

  • Fornell, C. (1982). A second generation of multivariate analysis, Vol. 1, New York: Praeger.

    Google Scholar 

  • Fornell, C. (1983). Issues in the application of covariance structure analysis. Journal of Consumer Research, 9, 443–448.

    Article  Google Scholar 

  • Fornell, C. (1989). The blending of theoretical and empirical knowledge in structural equations with unobservables. In H. Wold (Ed.), Theoretical Empiricism (pp. 153–173). New York: Paragon.

    Google Scholar 

  • Fornell, C. (1992). A national customer satisfaction barometer: the swedish experience. Journal of Marketing,56, 6–21.

    Article  Google Scholar 

  • Fornell, C., & Cha, J. (1993). Partial least squares, Unpublished working paper. Ann Arbor: University of Michigan Business School.

    Google Scholar 

  • Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18, 39–50.

    Article  Google Scholar 

  • Fornell, C., & Bookstein, F. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19, 440–452.

    Article  Google Scholar 

  • Gerbing, D. W., & Anderson, J. C. (1987). Improper solutions in the analysis of covariance structures: their interpretability and a comparison of alternative respecifications. Psychometrika, 52, 99–111.

    Article  Google Scholar 

  • Goldberger, A. S. (1973). Structural equation models: an overview. In A. S. Goldberger, & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 1–18). New York: Seminar Press.

    Google Scholar 

  • Green, D. H., Barclay, D. W., & Ryans, A. B. (1995). Entry strategy and long-term performance: conceptualization and empirical examination. Journal of Marketing, 59(October), 1–16.

    Google Scholar 

  • Hu, L. T., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural Equation Modeling Concepts, Issues, and Applications (pp. 76–99). Newberry Park, California: Sage.

    Google Scholar 

  • Hulland, J. S. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20, (2), 195–204.

    Article  Google Scholar 

  • Hulland, J. S., Chow, Y. H., & Lam, S. Y. (1996). Use of causal models in marketing research: a review. International Journal of Research in Marketing, 13(2), 181–197.

    Article  Google Scholar 

  • James, L. R., Mulaik, S. A., & Brett, J. M. (1982). Causal analysis: assumptions, models, and data. Beverly Hills: Sage.

    Google Scholar 

  • Johnson, M., & Fornell, C. (1987). The nature and methodological implication of the cognitive representation of products. Journal of Consumer Research, 14, 214–228.

    Article  Google Scholar 

  • Jöreskog, K. G. (1970). A general method for analysis of covariance structures. Biometrika, 57, 239–251.

    MATH  MathSciNet  Google Scholar 

  • Jöreskog, K. G. (1973). A general method for estimating a linear structural equation system. In A. S. Goldberger, & O. D. Duncan (Eds.), Structural equation models in the social sciences (pp. 85–112). New York: Seminar Press.

    Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Hillsdale, N.J.: Lawrence Erlbaum Associates.

    Google Scholar 

  • Lenk, P. (2000). Bayesian path analysis, Unpublished working paper. Ann Arbor: University of Michigan Business School.

    Google Scholar 

  • Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Heidelberg: Verlag.

    MATH  Google Scholar 

  • Lohmöller, J.-B., & Wold, H. (1984). Introduction to PLS estimation of path models with latent variables, including some recent developments on mixed scales variables. In G. Melischek, K. Rosengren, & J. Stappers (Eds.), Cultural indicators: an international symposium. Wein, Germany: Sonderbruck.

    Google Scholar 

  • MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 202–220.

    Google Scholar 

  • MacCallum, R. C., Browne, M. W., & Sugawara H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149.

    Article  Google Scholar 

  • Marsh, H. W., & Hau, K.-T. (1998). Confirmatory factor analysis: strategies for small sample sizes. In R. H. Hoyle (Ed.), Statistical strategies for small-sample research (pp. 251–284). Newbury Park, California: Sage.

    Google Scholar 

  • McArdle, J. J. (1980). Causal modeling applied to psychonomic systems simulation. Behavioral Research Methods and Instrumentation, 12, 193–209.

    Google Scholar 

  • Plouffe, C. R., Vandenbosch, M., & Hulland, J. (2001). Intermediating technologies and multi-group adoption: a comparison of consumer and merchant adoption intentions towards a new electronic payment system. Journal of Product Innovation Management, 18, 65–81.

    Article  Google Scholar 

  • Plouffe, C., Hulland, J. S., & Vandenbosch, M. (2001). Research Report: richness versus parsimony in modeling technology adoption decisions – understanding merchant adoption of a smart card-based payment system. Information Systems Research, 12(2), 208–222.

    Article  Google Scholar 

  • Qualls, W. J. (1987). Household decision behavior: the impact of husbands’ and wives’ sex role orientation. Journal of Consumer Research, 14, 264–279.

    Article  Google Scholar 

  • Ryan, M. J., & Rayner, B. (1998). Estimating structural equation models with PLS. Paper presented at the American Marketing Association Advanced Research Techniques Forum, Keystone, CO.

    Google Scholar 

  • Schneeweiss, H. (1990). Models with latent variables: LISREL versus PLS. Contemporary Mathematics, 112, 33–40.

    MathSciNet  Google Scholar 

  • Sharma, S., Durvasula, S., & Dillon W. R. (1989). Some results on the behavior of alternative covariance structure estimation procedures in the presence of non-normal data. Journal of Marketing Research, 26, 214–221.

    Article  Google Scholar 

  • Smith, J. B., & Barclay, D. W. (1997). The effects of organizational differences and trust on the effectiveness of selling partner relationships. Journal of Marketing, 61, 3–21.

    Article  Google Scholar 

  • Vilares, M. J., Almeida, M. H., & Coelho, P. S. (2010). Comparison of likelihood and PLS estimators for structural equation modeling: a simulation with customer satisfaction data. In V. Esposito Vinzi, W. Chin, J. Henseler, & H. Wang (Eds.), Handbook Partial Least Squares. Berlin: Springer.

    Google Scholar 

  • Wold, H. (1966). Nonlinear estimation by iterative least squares procedures. In F. N. David (Ed.), Festschrift for J. Neyman: Research Papers in Statistics (pp. 411–444). London: Wiley.

    Google Scholar 

  • Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce: theory and application of partial least squares. In J. Kmenta, & J. B. Ramsey (Eds.), Evaluation of Econometric Models. New York: Academic Press.

    Google Scholar 

  • Wold, H. (1982). Soft modeling: the basic design and some extensions. In K. G. Joreskog, & H. Wold (Eds.), Systems Under Indirect Observations: Causality, Structure, Prediction, Part 2, (pp. 1–54). North-Holland: Amsterdam.

    Google Scholar 

  • Wold, H. (1985). Systems analysis by partial least squares. In P. Nijkamp, L. Leitner, & N. Wrigley (Eds.), Measuring the Unmeasurable (pp. 221–251). Dordrecht, Germany: Marinus Nijhoff.

    Google Scholar 

  • Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics, 5, 161–215.

    Article  MATH  Google Scholar 

  • Zinkhan, G. M., Joachimsthaler, E., & Kinnear, T. C. (1987). Individual differences and marketing decision support system usage and satisfaction. Journal of Marketing Research, 24, 208–214.

    Article  Google Scholar 

Download references

Acknowledgements

John Hulland is Associate Professor of Marketing at the Katz Graduate School of Business, University of Pittsburgh. Michael J. Ryan is Professor Emeritus at the Ross School of Business, University of Michigan. Robert K. Rayner is Vice President, Market Strategies, Inc. The authors appreciate financial support for this work from the Richard Ivey School of Business, the Katz Graduate School of Business, and the Social Sciences and Humanities Council of Canada. We also appreciate the very helpful comments made on earlier versions of the paper by Michel Wedel and Fred Feinberg. Finally, we are extremely grateful for the study design and estimation assistance provided by Sungjin Hong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Hulland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hulland, J., Ryan, M.J., Rayner, R.K. (2010). Modeling Customer Satisfaction: A Comparative Performance Evaluation of Covariance Structure Analysis Versus Partial Least Squares. In: Esposito Vinzi, V., Chin, W., Henseler, J., Wang, H. (eds) Handbook of Partial Least Squares. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32827-8_15

Download citation

Publish with us

Policies and ethics