Skip to main content

Diagnosis and reconfiguration of quantised systems

  • Chapter
Diagnosis and Fault-Tolerant Control
  • 5013 Accesses

Abstract

Quantised systems are continuous-variable systems whose sensor and actuator signals can only be accessed through quantisers that produce symbolic state or event sequences. Hence, quantised systems have a discrete-event behaviour. This chapter shows how quantised systems can be represented by stochastic automata and how state observation, diagnostic and control problems can be solved. First a stochastic automaton is set up so as to represent the discrete-event behaviour of the quantised system completely. Second the given analysis and design problems are solved for the automaton by means of the methods that have been developed in Chapter 8.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9.9 Bibliographical notes

  1. K. J. Aström, P. Albertos, M. Blanke, A. Isidori, R. Sanz and W. Schaufelberger. Control of Complex Systems. Springer Verlag London, 2001.

    MATH  Google Scholar 

  2. D. Förstner, M. Jung and J. Lunze. A discrete-event model of asynchronous quantised systems. Automatica, 38: 1277–1286, 2002.

    Article  MATH  Google Scholar 

  3. D. Förstner and J. Lunze. Qualitative modeling of a power stage for diagnosis. 13th International Workshop on Qualitative Reasoning, Loch Awe 1999.

    Google Scholar 

  4. D. Förstner and J. Lunze. Qualitative model-based fault detection of a fuel injection system. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 88–93, Budapest 2002.

    Google Scholar 

  5. D. Förstner and J. Lunze. Discrete-event models of quantised systems for diagnosis. Intern. J. Control, 74: 690–700, 2001.

    Article  MATH  Google Scholar 

  6. D. Förstner, R. Weber and J. Lunze. Diagnose eines Diesel-Einspritzsystems mit ereignisdiskreten Modellen, Automatisierungstechnische Praxis 45: 73–79, 2003.

    Google Scholar 

  7. M. Kokar. On consistent symbolic representations of general dynamic systems. IEEE Trans., AC-40: 1231–1242, 1995.

    Google Scholar 

  8. S. Kowalewski, S. Engell, J. Preißig and O. Stursberg. Verification of logic controllers for continuous plants using timed condition/event-system models. Automatica, 35: 505–518, 1999.

    Article  Google Scholar 

  9. B. H. Krogh and A. Chutinan. Computing polyhedral approximations to flow pipes for dynamic systems. IEEE Conf. on Decision and Control, paper TM-01, 1998.

    Google Scholar 

  10. G. Lichtenberg, J. Lunze, R. Scheuring and J. Schröder. Prozeßdiagnose mittels qualitativer Modelle am Beispiel eines Wasserstoffverdichters. Automatisierungstechnik, 47: 101–109, 1999.

    Google Scholar 

  11. G. Lichtenberg and A. Steele. An approach to fault diagnosis using parallel qualitative observers. Workshop on Discrete Event Systems, pp. 290–295, 1996.

    Google Scholar 

  12. F. Lin. Diagnosability of discrete event systems and its applications. Discrete Event Dynamic Systems: Theory and Applications, 4: 197–212, 1994.

    Article  MATH  Google Scholar 

  13. C. Luh and B. Zeigler. Abstracting event-based control models for high autonomy systems. IEEE Trans., SMC-23: 42–54, 1993.

    Google Scholar 

  14. J. Lunze. Qualitative modelling of linear dynamical systems with quantized state measurements. Automatica, 30: 417–431, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Lunze. Stabilisation of nonlinear systems by qualitative feedback controllers. Intern. J. Control, 62: 109–128, 1995.

    MATH  MathSciNet  Google Scholar 

  16. J. Lunze. On the Markov property of quantized state measurement sequences. Automatica, 34: 1439–1444, 1998.

    Article  MATH  Google Scholar 

  17. J. Lunze. A timed discrete-event abstraction of continuous-variable systems. Intern. J. Control, 72: 1147–1164, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Lunze. Diagnosis of quantised systems based on a timed discrete-event model. IEEE Trans., SMC-30: 322–335, 2000.

    Google Scholar 

  19. J. Lunze. The state partitioning problem of quantized systems, in Blondel, V. D.; Megretski, A.: Unsolved Problems in Mathematical Systems and Control Theory, Princeton University Press, pp. 134–139, Princeton 2004.

    Google Scholar 

  20. J. Lunze, B. Nixdorf and J. Schröder. Deterministic discrete-event representations of continuous-variable systems. Automatica, 35: 101–109, 1999.

    Article  Google Scholar 

  21. J. Lunze and J. Schröder. Process diagnosis based on a discrete-event description. Automatisierungstechnik, 47: 358–365, 1999.

    Google Scholar 

  22. J. Lunze and J. Schröder. State observation and diagnosis of discrete-event systems described by stochastic automata. Discrete Event Dynamic Systems: Theory and Applications, 11, 2001.

    Google Scholar 

  23. J. Lunze and J. Schröder. Connections between qualitative dynamical models and the Frobenius-Perron operator, Automatisierungstechnik, 51: 471–479, 2003.

    Article  Google Scholar 

  24. J. Neidig, C. Falkenberg, J. Lunze and M. Fritz. Qualitative diagnosis of an automative air path. atp international, 3: 37–42, 2005.

    Google Scholar 

  25. A. S. Özveren and A. Willsky. Observability of discrete event dynamic systems. IEEE Trans., AC-35: 797–806, 1990.

    Google Scholar 

  26. M. J. H. Pijpers, H. Preisig and M. Weiss. A discrete modelling procedure for continuous processes based on state discretization. Proc. 2nd MATHMOD Conf. pp. 189–194, Vienna 1997.

    Google Scholar 

  27. J. Raisch. Nondeterministic automata as approximations for continuous systems — An approach with an adjustable degree of accuracy. IMACS Symposium on Mathematical Modelling, pp. 195–202, 1997.

    Google Scholar 

  28. M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen and D. Teneketzis. Diagnosability of discrete event systems. IEEE Trans., AC-40: 1555–1575, 1995.

    MathSciNet  Google Scholar 

  29. M. Sampath, R. Sengupta, S. Lafurtune, K. Sinnamohideen and D. Teneketzis. Failure diagnosis using discrete event models. IEEE Trans., CST-4, 1996.

    Google Scholar 

  30. J. Schröder, F. Schiller and J. Lunze. Diagnosis of transient faults in quantised systems. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, Budapest, 2000.

    Google Scholar 

  31. O. Stursberg, S. Kowalewski and S. Engell. Generating timed discrete models of continuous systems. Proc. 2nd MATHMOD Conf., pp. 203–209, Vienna 1997.

    Google Scholar 

  32. Q. Wang and F. E. Cellier. Time windows: Automated abstraction of continuous-time models into discrete-event models in high autonomy systems. Int. J. General Systems, 19: 241–262, 1991.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Diagnosis and reconfiguration of quantised systems. In: Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-35653-0_9

Download citation

Publish with us

Policies and ethics