Skip to main content

Studies of Contact Mechanics with the QCM

  • Chapter
Piezoelectric Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 5))

Abstract

The quartz crystal microbalance can serve as high-frequency probe of the microcontacts formed between the crystal surface and a solid object touching it. On a simplistic level, the load can be approximated by an assembly of point masses, springs, and dashpots. The Sauerbrey model, leading to a decrease in frequency, is recovered if small particles are rigidly attached to the crystal. In another limiting case, the particles are so heavy that inertia holds them in place in the laboratory frame. The spheres exert a restoring force onto the crystal, thereby increasing the stiffness of the composite resonator. The resonance frequency increases in proportion to the lateral spring constant of the sphere-plate contacts. A third limiting case is represented by particles attached to the crystal via a dashpot. Within this model (extensively used in nanotribology) the dashpot increases the bandwidth. The momentum relaxation time τ S (“slip time”) is calculated from the ratio of the increase in bandwidth and the decrease in frequency, ΔГ/(− Δf).

The force-displacement relations in contact mechanics are often nonlinear. A prominent example is the transition from stick to slip. Even for nonlinear interactions, there is a strictly quantitative relationship between the shifts of frequency and bandwidth, Δf and ΔГ, on the one hand, and the force acting on the crystal, F(t), on the other. Δf and ΔГ are proportional to the in-phase and the out-of-phase component of F(t), respectively. Evidently, F(t) cannot be explicitly derived from Δf and ΔГ. Still, any contact-mechanical model (like the Mindlin model of partial slip) can be tested by comparing the predicted and the measured values of Δf and ΔГ . Further experimental constraints stem from the measurement of the amplitude dependence of the resonance parameters.

Contacts mechanics in the MHz range is much different from its low-frequency counterpart. For instance, static friction coefficients probed with MHz excitation are often much above 1. Contact mechanics at short time scales should be of substantial practical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dowsan D (1998) History of tribology. Professional Engineering Publishing

    Google Scholar 

  2. Hertz H (1881) J Reine und Angew Mathem 92:156

    Google Scholar 

  3. Johnson KL (1989) Contact mechanics. Cambridge, NY

    Google Scholar 

  4. Persson BNJ (1998) Sliding friction. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Müser M, Urbakh M, Robbins MO (2003) Adv Chem Phys 126:187

    Article  Google Scholar 

  6. Bushan B (ed) (1995) Handbook of Micro/nano tribology, CRC, Boca Raton

    Google Scholar 

  7. McClelland GM (1989) In: Grunze M, Kreuzer HJ (eds.) Adhesion and friction. Springer Series in Surface Science 17:1

    Google Scholar 

  8. Meyer E, Overney RM, Frommer J (1995) In: Bushan B (ed.) Handbook of micro/nano tribology. CRC, p 223

    Google Scholar 

  9. Tshiprut Z, Filippov, AE Urbakh, M (2005) Phys Rev Lett 95:016101

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Homola AM, Israelachvili JN, Lee ML, McGuiggan PM (1989) J Tribolog 111:675

    Article  CAS  Google Scholar 

  11. Homola AM, Israelachvili JN, McGuiggan PM, Lee ML (1990) Wear 136:65

    Article  CAS  Google Scholar 

  12. Kumacheva E (1998) Progr in Surf Sci 58:75

    Article  CAS  Google Scholar 

  13. Bowden FP, Tabor D (1967) Friction and lubrication. Methuen, London

    Google Scholar 

  14. Baumberger T, Heslot F, Perrin B (1994) Nature 367:544

    Article  ADS  Google Scholar 

  15. Duran J (1999) Sands, powders, and grains. Springer, Berlin Heidelberg New York

    Google Scholar 

  16. Herminghaus S (2005) Adv Phys 54:221

    Article  ADS  Google Scholar 

  17. Scherge M, Schaefer JA (1998) Tribolog Lett 4:37

    Article  Google Scholar 

  18. Dybwad GL (1985) J Appl Phys 58:2789

    Article  ADS  CAS  Google Scholar 

  19. Krim J, Solina DH, Chiarello R (1991) Phys Rev Lett 66:181

    Article  PubMed  ADS  CAS  Google Scholar 

  20. Mak C, Krim J (1998) Phys Rev B 58:5157

    Article  ADS  CAS  Google Scholar 

  21. Bruschi L, Carlin A, Mistura G (2001) Phys Rev Lett 88:46105

    Article  CAS  Google Scholar 

  22. König AM, Düwel M, Du B, Kunze M, Johannsmann D (2006) Langmuir 22:229

    Article  PubMed  CAS  Google Scholar 

  23. Laschitsch A, Johannsmann D (1999) J Appl Phys 85:3759

    Article  ADS  CAS  Google Scholar 

  24. Watts ET, Krim J, Widom A (1990) Phys Rev B 41:3466

    Article  ADS  Google Scholar 

  25. D’Amour JN, Stålgren JJR, Kanazawa KK, Frank CW, Rodahl M, Johannsmann D (2006) Phys Rev Lett 96:058301

    Article  PubMed  ADS  CAS  Google Scholar 

  26. Bocquet L, Charlaix E, Ciliberto S, Crassous J (1998) Nature 396:735

    Article  ADS  CAS  Google Scholar 

  27. Berg S, Johannsmann D, Ruths M (2002) J Appl Phys 92:6905

    Article  ADS  CAS  Google Scholar 

  28. Giessibl FJ (2001) Appl Phys Lett 78:123

    Article  ADS  CAS  Google Scholar 

  29. Hölscher H, Schwarz UD, Wiesendanger R (1999) Appl Surf Sci 140:344

    Article  Google Scholar 

  30. Strogatz S (1996) Nonlinear dynamics and chaos, chap 7.6. Addison-Wesley

    Google Scholar 

  31. Berg S, Prellberg T, Johannsmann D (2003) Rev Sci Instr 74:118

    Article  ADS  CAS  Google Scholar 

  32. Berg S, Johannsmann D (2003) Phys Rev Lett 91:145505

    Article  PubMed  ADS  CAS  Google Scholar 

  33. Mindlin RD, Deresiewicz H (1953) J Appl Mech 20:327

    MATH  MathSciNet  Google Scholar 

  34. Bureau L, Caroli C, Baumberger T (2003) Proc Royal Soc London A 459:2787

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. Berthoud P, Baumberger T (1998) Proc Royal Soc London A 454:1615

    Article  ADS  CAS  MathSciNet  Google Scholar 

  36. Rodahl M, Kasemo B (1996) Rev Sci Instr 67:3238

    Article  ADS  CAS  Google Scholar 

  37. Maier S, Sang Y, Filleter T, Grant M, Bennewitz B, Gnecco E, Meyer E (2005) Phys Rev B 72:245418

    Article  ADS  CAS  Google Scholar 

  38. Flanigan CM, Desai M, Shull KR (2000) Langmuir 16:9825

    Article  CAS  Google Scholar 

  39. Shull KR (2002) Mat Sci Engin R 36:1

    Article  Google Scholar 

  40. Zhang QL, Lec RM, Pourrezaei K (2006) IEEE TRANSACTIONS ON ULTRASONIC FERROELECTRICS AND FREQUENCY CONTROL 53(1):167–174

    Article  Google Scholar 

  41. Szolwinski MP, Farris TN (1996) Wear 198:93

    Article  CAS  Google Scholar 

  42. Varenberg M, Etsion I, Altus E (2005) Tribology Letters 19:263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johannsmann, D. (2006). Studies of Contact Mechanics with the QCM. In: Janshoff, A., Steinem, C. (eds) Piezoelectric Sensors. Springer Series on Chemical Sensors and Biosensors, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36568-6_4

Download citation

Publish with us

Policies and ethics