Skip to main content

Some computational experiments in number theory

  • Chapter
Discovering Mathematics with Magma

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 19))

Abstract

The Magma code and some computational results of experiments in number theory are given. The experiments concern covering systems with applications to explicit primality tests, the inverse of Euler’s totient function, and class number relations in Galois extensions of ℚ. Some evidence for various conjectures and open problems is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. R. Baillie, G. Cormack, H. C. Williams, The problem of Sierpiński concerning k · 2n + 1, Math. Comp. 37 (1981), 229–231.

    Article  MATH  MathSciNet  Google Scholar 

  2. 2. Bruce C. Berndt, Ronald J. Evans, Kenneth S. Williams, Gauss and Jacobi sums, Canad. Math. Soc. series of monographs and advanced texts 21, New York: John Wiley and Sons, 1997.

    Google Scholar 

  3. 3. Wieb Bosnia, Explicit primality criteria for h · 2k ± 1, Math. Comp. 61 (1993), 97–109.

    Article  MathSciNet  Google Scholar 

  4. 4. Wieb Bosnia, Cubic reciprocity and explicit primality tests for h · 3k ± 1, pp. 77–89 in: Alf van der Poorten, Andreas Stein (eds.), High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun. 41, Providence: Amer. Math. Soc. 2004.

    Google Scholar 

  5. 5. Wieb Bosma, Some computational experiments in elementary number theory, report 05-02 Mathematical Institute, Radboud University Nijmegen, 2005.

    Google Scholar 

  6. 6. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265. See also the Magma home page at http://magma.maths.usyd.edu.au/magma/.

    Article  MATH  MathSciNet  Google Scholar 

  7. 7. Wieb Bosma, Bart de Smit, Class number relations from a computational point of view, J. Symbolic Comput. 31 (2001), 97–112.

    Article  MATH  MathSciNet  Google Scholar 

  8. 8. Wieb Bosma, Bart de Smit, On arithmetically equivalent number fields of small degree, pp. 67–79 in: C. Fieker, D.R. Kohel (eds.), Algorithmic Number Theory Symposium, Sydney, 2002, Lecture Notes in Computer Science 2369, Berlin, Heidelberg: Springer, 2002.

    Google Scholar 

  9. 9. R. Brauer, Beziehungen zwischen Klassenzahlen von Teilkörpern eines galoiss-chen Körpers, Math. Nachrichten 4 (1951), 158–174.

    MATH  MathSciNet  Google Scholar 

  10. 10. J. J. Cannon, D. F. Holt, Computing maximal subgroups of a unite group, J. Symbolic Comput. 37 (2004), 589–609.

    Article  MATH  MathSciNet  Google Scholar 

  11. 11. R. D. Carmichael, On Euler's φ-function, Bull. Amer. Math. Soc. 13 (1907), 241–243; Errata: Bull. Amer. Math. Soc. 54 (1948), 1192.

    MathSciNet  Google Scholar 

  12. 12. R. D. Carmichael, Note on Euler's φ-function, Bull. Amer. Math. Soc. 28 (1922), 109–110; Errata: Bull. Amer. Math. Soc. 55 (1949), 212.

    MATH  MathSciNet  Google Scholar 

  13. 13. S. L. G. Choi, Covering the set of integers by congruence classes of distinct moduli, Math. Comp. 25 (1971), 885–895.

    Article  MATH  MathSciNet  Google Scholar 

  14. 14. R.F. Churchhouse, Covering sets and systems of congruences, pp. 20–36 in: R.F. Churchhouse, J.-C. Herz (eds.), Computers in mathematical research, Amsterdam: North-Holland, 1968.

    Google Scholar 

  15. 15. D.W. Erbach, J. Fischer, J. McKay, Polynomials with PSL(2, 7) as Galois group, J. Number Theory 11 (1979), 69–75.

    Article  MATH  MathSciNet  Google Scholar 

  16. 16. Paul Erdös, Some of my favorite problems and results, pp. 47–67 in: Ronald L. Graham, Jaroslav Nešetřil (eds.), The Mathematics of Paul Erdős I, Berlin: Springer, 1997.

    Google Scholar 

  17. 17. Paul ErdoUs, Some remarks on Euler's φ function, Acta Arith. 4 (1958), 10–19.

    MathSciNet  Google Scholar 

  18. 18. F. Gassmann, Bemerkungen zu der vorstehenden Arbeit von Hurwitz (‘Öber Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe’), Math. Z. 25 (1926), 124–143.

    Google Scholar 

  19. 19. Andrew Granville, K. Soundararajan, A binary additive problem of Erdös and the order of 2 mod p2, Ramanujan J. 2 (1998), 283–298.

    Article  MATH  MathSciNet  Google Scholar 

  20. 20. Richard K. Guy, Unsolved problems in number theory, Unsolved problems in intuitive mathematics I, New York: Springer 1994 (2nd edition).

    Google Scholar 

  21. 21. Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, Graduate texts in mathematics 84, New York: Springer, 1982.

    Google Scholar 

  22. 22. G. Jaeschke, On the smallest k such that all k · 2N + 1 are composite, Math. Comp. 40 (1983), 381–384; Errata: Math. Comp. 45 (1985), 637.

    Article  MATH  MathSciNet  Google Scholar 

  23. 23. Wilfrid Keller, Factors of Fermât numbers and large primes of the form k · 2n + l, Math. Comp. 41 (1983), 661–673.

    Article  MATH  MathSciNet  Google Scholar 

  24. 24. Wilfrid Keller, The least prime of the form k · 2n + 1, Abstracts Amer. Math. Soc. 9 (1988), 417–418.

    Google Scholar 

  25. 25. V. L. Klee, Jr., On a conjecture of Carmichael, Bull. Amer. Math. Soc. 53 (1947), 1183–1186.

    Article  MATH  MathSciNet  Google Scholar 

  26. 26. N. Klingen, Arithmetical similarities, Oxford: Oxford University Press, 1998.

    MATH  Google Scholar 

  27. 27. Samuel E. LaMacchia, Polynomials with Galois group PSL(2, 7), Comm. Algebra 8 (1980), 983–992.

    Article  MATH  MathSciNet  Google Scholar 

  28. 28. Douglas B. Meade, Charles A. Nicol, Maple tools for use in conjecture testing and iteration mappings in number theory, IMI Research Report 1993:06 (Department of Mathematics, University of South Carolina), 1993.

    Google Scholar 

  29. 29. Ryozo Morikawa, Some examples of covering sets, Bull. Fac. Liberal Arts, Nagasaki Univ. 21 (1981), 1–4.

    MATH  MathSciNet  Google Scholar 

  30. 30. Oystein Ore, J. L. Selfridge, P. T. Bateman, Euler's function: Problem 4995 and its solution, Amer. Math. Monthly 70 (1963), 101–102.

    Article  MathSciNet  Google Scholar 

  31. 31. R. Perlis, On the equation ςK(s) = ςK'(S) J. Number Theoryy 9 (1977), 342–360.

    Article  MATH  MathSciNet  Google Scholar 

  32. 32. R. Perils, On the class numbers of arithmetically equivalent fields, J. Number Theory 10 (1978), 458–509.

    Google Scholar 

  33. 33. A. de Polignac, Recherches nouvelles sur les nombres premiers, C. R. Acad. Sci. Paris Math. 29 (1849), 397–401; 738–739.

    Google Scholar 

  34. 34. Carl Pomerance, On Carmichael's conjecture, Proc. Amer. Math. Soc. 43 (1974), 297–298.

    Article  MATH  MathSciNet  Google Scholar 

  35. 35. P. Poulet, Nouvelles suites arithmétiques, Sphinx 2 (1932), 53–54.

    Google Scholar 

  36. 36. H. Riesel, Några stora primtal, Elementa 39 (1956), 258–260.

    Google Scholar 

  37. 37. Aaron Schlafly, Stan Wagon, Carmichael's Conjecture on the Euler function is valid below 1010000000, Math. Comp. 63 (1994), 415–419.

    Article  MATH  MathSciNet  Google Scholar 

  38. 38. W. Sierpiński, Sur un probléme concernant les nombres k × 2n + l, Elemente der Mathematik 15 (1960), 63–74.

    Google Scholar 

  39. 39. Bart de Smit, Robert Perils, Zeta functions do not determine class numbers, Bull. Amer. Math. Soc. 31 (1994), 213–215.

    MATH  MathSciNet  Google Scholar 

  40. 40. R. G. Stanton, Further results on covering integers of the form 1 + k · 2n by primes, pp. 107–114 in: Kevin L. McAvaney (ed.), Combinatorial Mathematics VIII, Lecture Notes in Mathematics 884, Berlin: Springer, 1981.

    Chapter  Google Scholar 

  41. 41. R. G. Stanton, H. C. Williams, Computation of some number-theoretic coverings pp. 8–13 in: Kevin L. McAvaney (ed.), Combinatorial Mathematics VIII, Lecture Notes in Mathematics 884, Berlin: Springer, 1981.

    Chapter  Google Scholar 

  42. 42. http://www.prothsearch.net/sierp.html

  43. 43. http://www.prothsearch.net/rieselprob.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Bosma, W. (2006). Some computational experiments in number theory. In: Bosma, W., Cannon, J. (eds) Discovering Mathematics with Magma. Algorithms and Computation in Mathematics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37634-7_1

Download citation

Publish with us

Policies and ethics