Skip to main content

Optically Pumped FIR Lasers

  • Conference paper
Lasers and Applications

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 26))

  • 147 Accesses

Abstract

The generation of far-infrared radiation (FIR) by optically pumping molecular gases was first accomplished by Chang and Bridges in 1970 [1]. They made use of CO2 laser to pump specific vibrationalrotational states of CH3F molecule at low pressure, producing population inversion between rotational levels in the excited vibrational state. The importance of this pumping scheme for obtaining FIR laser lines is due to the existence of a great number of polar molecules with vibrational absorption in the 9–11μm region where the CO2 laser emits, combined with the high efficiency of the CO2 laser pump. So far more than 50 molecules have been found to lase, yielding over 1000 lines in the 5–250 cm-1 spectral range [2] and an intensive search for new and efficient lines is now taking place in several laboratories. A good review of the FIR laser field has been given by Hodges [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Y. Chang and T. J. Bridges, Opt. Comm. 1, 423 (1970)

    Article  ADS  Google Scholar 

  2. D. J. Knight, Ordered List of Optically-Pumped Laser Lines National Physical Laboratory, Teddington-UKNPL № QU45–1979.

    Google Scholar 

  3. D. T. Hodges, Infrared Phys. 18, 375 (1978)

    Article  ADS  Google Scholar 

  4. F. R. Petersen, K. M. Evenson, D. A. Jennings and A. Scalabrin, IEEE J. Quantum Electron. QE16, 319 (1980).

    Article  ADS  Google Scholar 

  5. J. T. Hougen, J. A. Jennings, and K. M. Evenson, J. Mol

    Google Scholar 

  6. D. A. Jennings, F. R. Petersen, and K. M. Evenson, “Direct Frequency Measurement of the 260 THz (1.15 μm) 20Ne Laser: And Beyond”, in Laser Spectroscopy IV, ed. by H. Walther, K. W. Rothe, Springer Series in Optical Sciences, Vol. 21 (Springer, Berlin, Heidelberg, New York 1979) pp. 39–48

    Chapter  Google Scholar 

  7. M. Yamanaka et al., Int. J. Infrared & Mill. Waves, 1, 57 (1980).

    Article  ADS  Google Scholar 

  8. Z. Drozdowicz, P. Woskoboinikow, K. Isobe, D. R. Cohn, R. J. Temkin, K. J. Button, and J. Waldman, IEEE J. Quantum Electron. QE13, 413 (1977)

    Article  ADS  Google Scholar 

  9. D. R. Woods, “The High Resolution Infrared Spectra of Normal and Deuterated Methanol”, Ph. D. Thesis, U.Michigan (1970).

    Google Scholar 

  10. A. Serrallach, R. Meyer, and Hs. H. Gunthard, J. Mol. Spectros. 52, 94 (1974).

    Article  ADS  Google Scholar 

  11. T. Y. Chang, T. J. Bridges, and E. G. Burkhardt, Appl.Phys. Lett. 17, 249 (1970).

    Article  ADS  Google Scholar 

  12. M. Inguscio, A. Moretti and F. Strumia, Opt. Comm. 32, 87 (1980).

    Article  ADS  Google Scholar 

  13. S. F. Dyubko, V. A. Svich and L. D. Fesenko, Radiofisika 18, 1434 (1975).

    ADS  Google Scholar 

  14. E. J. Danielewicz and C. O. Weiss, IEEE J. Quantum Electron. QE 14, 458 (1978).

    Article  ADS  Google Scholar 

  15. M. Grinda and C. O. Weiss, Opt. Comm. 26, 91 (1978).

    Article  ADS  Google Scholar 

  16. Y. C. Ni and J. Heppner, Opt. Comm. 32, 459 (1980)

    Article  ADS  Google Scholar 

  17. E. C. C. Vasconcellos, A. Scalabrin, F. R. Petersen and K. M. Evenson (To be published).

    Google Scholar 

  18. G. Ziegler and U. Durr, IEEE. J. Quantum Electron. QE-14, 708 (1978).

    Article  ADS  Google Scholar 

  19. A. Scalabrin, F. R. Petersen, K. M. Evenson, and D. A. Jennings, Int. J. Infrared & Mill. Waves 1, 117 (1980).

    Article  ADS  Google Scholar 

  20. R. J. Saykally, A. Scalabrin, K. M. Evenson (To be published).

    Google Scholar 

  21. E. C. C. Vasconcellos, A. Scalabrin, F. R. Petersen and K. M. Evenson (To be published)

    Google Scholar 

  22. O. R. Wood, Proc. IEEE 62, 355 (1974).

    Article  Google Scholar 

  23. M. C. Richardson, K. Leopold and A. J. Alcock, IEEE J. Quantum Electron. QE-9, 934 (1973)

    Article  ADS  Google Scholar 

  24. A. M. Lamberton and P. R. Pearson, Electron. Lett. 7, 141 (1971).

    Article  Google Scholar 

  25. E. Morikawa, J. Appl. Phys. 48, 1229 (1977)

    Article  ADS  Google Scholar 

  26. G. Salvetti, Opt. Commun. 30, 397 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Scalabrin, A., Vasconcellos, E.C.C., Cruz, C.H.B., Fragnito, H.L. (1981). Optically Pumped FIR Lasers. In: Guimaraes, W.O.N., Lin, CT., Mooradian, A. (eds) Lasers and Applications. Springer Series in Optical Sciences, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38609-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38609-4_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13507-5

  • Online ISBN: 978-3-540-38609-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics