Skip to main content

Losses in Optical Waveguides

  • Chapter
Integrated Optics

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

Chapters 2 and 3 have explained cutoff conditions in waveguides and described the various optical modes which can be supported. Following the question as to which modes propagate, the next most important characteristic of a waveguide is the attenuation, or loss, that a light wave experiences as it travels through the guide. This loss is generally attributable to three different mechanisms: scattering, absorption and radiation. Scattering loss usually predominates in glass or dielectric waveguides, while absorption loss is most important in semiconductors and other crystalline materials. Radiation losses become significant when waveguides are bent through a curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, E.U. Condon: Electromagnetic waves, in Handbook of Physics, ed. by E.U. Condon, H. Odishaw (McGraw-Hill, New York 1967) Sect. 6. 1

    Google Scholar 

  2. P.K. Tien: Appl. Opt. 10, 2395 (1971)

    Article  ADS  Google Scholar 

  3. D.H. Hensler, J.D. Cuthbert, R.J. Martin, P.K. Tien: Appl. Opt. 10, 1037 (1971)

    Article  ADS  Google Scholar 

  4. D. Marcuse: Bell Syst. Techn. J. 48, 3187, 3233 (1969); ibid. 49, 273 (1970); ibid. 51, 429 (1972)

    Google Scholar 

  5. Y. Suematsu, K. Furuya: Electron, and Commun. Jpn. 56-C, 62 (1973)

    Google Scholar 

  6. S. Miyanaga, M. Imai, T. Asakura: IEEE J. QE-14, 30 (1978)

    Google Scholar 

  7. M. Gottlieb, G. Brandt, J. Conroy: IEEE Trans. CAS-26, 1029 (1979)

    Google Scholar 

  8. D.G. Hall, G.H. Ames, R.W. Modavis: J. Opt. Soc. Am. 72, 1821 (1982)

    ADS  Google Scholar 

  9. D.D. North: IEEE J. QE-15, 17 (1979)

    Google Scholar 

  10. N.K. Uzunoglu, J.G. Fikioris: J. Opt. Soc. Am. 72, 628 (1982)

    Article  ADS  Google Scholar 

  11. A. Bostrom, P. Olsson: J. Appl. Phys. 52, 1187 (1981)

    Article  ADS  Google Scholar 

  12. T. Moss, G. Hawkins: Infrared Phys. 1, 111 (1961)

    Article  ADS  Google Scholar 

  13. M.D. Sturge: Phys. Rev. 127, 768 (1962)

    Article  ADS  Google Scholar 

  14. H. Stoll, A. Yariv, R.G. Hunsperger, E. Garmire: Proton-implanted waveguides and integrated optical detectors in GaAs. OSA Topical Meeting on Integrated Optics, New Orleans, LA (1974)

    Google Scholar 

  15. V. Evtuhov, A. Yariv: IEEE Trans. MTT-23, 44 (1975)

    Google Scholar 

  16. D.L. Spears, A.J. Strauss, S.R. Chinn, I. Meingailis, P. Vohl: CdTe waveguide devices and HgCdTe epitaxial layers for integrated optics. OSA Topical Meeting on Integrated Optics, Salt Lake City, UT (1976)

    Google Scholar 

  17. P.K. Cheo, J.M. Berak, W. Oshinsky, J.L. Swindal: Appl. Opt. 12, 500 (1973)

    Article  ADS  Google Scholar 

  18. M. Barnoski, R.G. Hunsperger, R. Wislon, G. Tangonan: J. Appl. Phys. 44, 1925 (1973)

    Article  ADS  Google Scholar 

  19. A. Yariv: Introduction to Optical Electronics, 2nd edn. ( Holt, Rinehart and Winston, New York 1976 ) p. 100

    Google Scholar 

  20. M.A. Mentzer, R.G. Hunsperger, S. Sriram, J. Bartko, M.S. Wlodawski, J.M. Zavada, H.A. Jenkenson: Opt. Eng. 24, 225 (1985)

    Article  Google Scholar 

  21. J.I. Pankove: Optical Processes in Semiconductors ( Prentice-Hall, Englewood Cliffs, NJ 1971 ) p. 75

    Google Scholar 

  22. H.Y. Fan: Effects of free carriers on the optical properties. Semiconductors and Semi-metals 3, 409 ( Academic, New York 1967 )

    Google Scholar 

  23. D. Marcuse: Bell Syst. Tech. J. 48, 3187 (1969)

    Google Scholar 

  24. E.A.J. Marcatili, S.E. Miller: Bell Syst. Tech. J. 48, 2161 (1969)

    Google Scholar 

  25. S.E. Miller: Bell Syst. Tech. J. 43, 1727 (1964)

    Google Scholar 

  26. J.E. Goell: Loss mechanisms in dielectric waveguides, in Introduction to Integrated Optics, ed. by M.K. Barnoski ( Plenum, New York 1974 ) p. 118

    Google Scholar 

  27. E. Neumann, W. Richter: Appl. Opt. 22, 1016 (1983)

    Article  ADS  Google Scholar 

  28. P.K. Tien, R. Ulrich, R.J. Martin: Appl. Phys. Lett. 14, 291 (1969)

    Article  ADS  Google Scholar 

  29. H.P. Weber, F.A. Dunn, W.N. Leibolt: Appl. Opt. 12, 755 (1973)

    Article  ADS  Google Scholar 

  30. H. Osterberg, L.W. Smith: J. Opt. Soc. Am. 54, 1078 (1964)

    Article  ADS  Google Scholar 

  31. J.B Hurtado-Ramos, O.N. Stavroudis, H. Wang, G. Gomez-Rosas: Scattering loss measurements of evaporated slab waveguides of SiO2 and NdF3 using a prism coupler and angle-limited integrated scattering. Optical Engineering 39, 558 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hunsperger, R.G. (2002). Losses in Optical Waveguides. In: Integrated Optics. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38843-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-38843-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-12096-5

  • Online ISBN: 978-3-540-38843-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics