Skip to main content

Representing Audio Data by FS-Trees and Adaptable TV-Trees

  • Conference paper
Foundations of Intelligent Systems (ISMIS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2871))

Included in the following conference series:

Abstract

An automatic content extraction from multimedia files based both on manual and automatic indexing is extensively explored. However, in the domain of musical data, an automatic content description of musical sounds has not been broadly investigated yet and still needs an intensive research. In this paper, spectro-temporal sound representation is used for the purpose of automatic musical instrument recognition. Assuming that musical instruments can be learned in terms of a group of features and also based on them either automatic or manual indexing of an audio file is done, Frame Segment Trees (FS-trees) can be used to identify segments of an audio marked by the same indexes. Telescopic vector trees (TV-trees) are known from their applications in text processing and recently in data clustering algorithms. In this paper, we use them jointly with FS-trees to construct a new Query Answering System (QAS) for audio data. Audio segments are returned by QAS as answers to user queries. Heuristic strategy to build adaptable TV-trees is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando, S., Yamaguchi, K.: Statistical Study of Spectral Parameters in Musical Instrument Tones. J. Acoust. Soc. of America 94(1), 37–45 (1993)

    Article  Google Scholar 

  2. Batlle, E., Cano, P.: Automatic Segmentation for Music Classification using Competitive Hidden Markov Models. Int. Sym. Mus. Inf. Retr. Plymouth, MA (2000)

    Google Scholar 

  3. Beauchamp, J.W., Maher, R., Brown, R.: Detection of Musical Pitch from Recorded Solo Performances. 94th AES Convention, Berlin (1993) preprint 3541

    Google Scholar 

  4. Brown, J.: Computer identification of musical instruments using pattern recognition with cepstral coefficients as features. J. Acoust. Soc. Am. 105, 1933–1941 (1999)

    Article  Google Scholar 

  5. Brown, J., Houix, O., McAdams, S.: Feature dependence in the automatic identification of musical woodwind instruments. J. Acoust. Soc. Am. 109, 1064–1072 (2001)

    Article  Google Scholar 

  6. Cook, P.R., Morrill, D., Smith, J.O.: An Automatic Pitch Detection and MIDI Control System for Brass Instruments. Invited for special session on Automatic Pitch Detection, Acoustical Society of America, New Orleans (1992)

    Google Scholar 

  7. Eronen, A., Klapuri, A.: Musical Instrument Recognition Using Cepstral Coefficients and Temporal Features. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP 2000, Plymouth, MA, pp. 753–756 (2000)

    Google Scholar 

  8. Fujinaga, I., McMillan, K.: Realtime recognition of orchestral instruments. In: Proceedings of the International Computer Music Conference, pp. 141–143 (2000)

    Google Scholar 

  9. Herrera, P., Amatriain, X., Batlle, E., Serra, X.: Towards instrument segmentation for music content description: a critical review of instrument classification techniques. In: Proc. Int. Sym. Music Inf. Retr. (ISMIR 2000), Plymouth, MA (2000)

    Google Scholar 

  10. Herrera, P., Peeters, G., Dubnov, S.: Automatic Classification of Musical Instrument Sounds. Journal of New Music Research 32(1) (2003)

    Google Scholar 

  11. ISO/IEC JTC1/SC29/WG11: MPEG-7 Overview (2002)

    Google Scholar 

  12. Kaminskyj, I.: Multi-feature Musical Instrument Classifier. MikroPolyphonie 6 (2000), online journal at http://farben.latrobe.edu.au/

  13. Kostek, B., Czyzewski, A.: Representing Musical Instrument Sounds for Their Automatic Classification. J. Audio Eng. Soc. 49(9), 768–785 (2001)

    Google Scholar 

  14. Kostek, B., Wieczorkowska, A.: Parametric Representation of Musical Sounds. Arch. Acoustics 22(1), 3–26 (1997)

    Google Scholar 

  15. Lindsay, A.T., Herre, J.: MPEG-7 and MPEG-7 Audio – An Overview. J. Audio Eng. Soc. 49(7/8), 589–594 (2001)

    Google Scholar 

  16. Martin, K., Kim, Y.: 2pMU9. Musical instrument identification: A patternrecognition approach. 136-th meeting Acoustical Soc. America, Norfolk, VA (1998)

    Google Scholar 

  17. Øhrn, A., Komorowski, J., Skowron, A., Synak, P.: The design and implementation of a knowledge discovery toolkit based on rough sets: The ROSETTA system. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications. Studies in Fuzziness and Soft Computing, vol. 18, ch. 19, pp. 376–399. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  18. Opolko, F., Wapnick, J.: MUMS – McGill University Master Samples. CD’s (1987)

    Google Scholar 

  19. Pollard, H.F., Jansson, E.V.: A Tristimulus Method for the Specification of Musical Timbre. Acustica 51, 162–171 (1982)

    Google Scholar 

  20. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  21. Ślȩzak, D., Synak, P., Wieczorkowska, A., Wróblewski, J.: KDD-based approach to musical instrument sound recognition. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 29–37. Springer, Heidelberg (2002)

    Google Scholar 

  22. Subrahmanian, V.S.: Multimedia Database Systems. Morgan Kaufmann Publishers, San Francisco (1998)

    Google Scholar 

  23. Wieczorkowska, A.A.: The recognition efficiency of musical instrument sounds depending on parameterization and type of a classifier. PhD thesis (in Polish), Technical University of Gdansk, Poland (1999)

    Google Scholar 

  24. Wieczorkowska, A.: Rough Sets as a Tool for Audio Signal Classification. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1999. LNCS, vol. 1609, pp. 367–375. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Wieczorkowska, A.A., Raś, Z.W.: Audio Content Description in Sound Databases. In: Zhong, N., Yao, Y., Ohsuga, S., Liu, J. (eds.) WI 2001. LNCS (LNAI), vol. 2198, pp. 175–183. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wieczorkowska, A.A., Raś, Z.W., Tsay, LS. (2003). Representing Audio Data by FS-Trees and Adaptable TV-Trees. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds) Foundations of Intelligent Systems. ISMIS 2003. Lecture Notes in Computer Science(), vol 2871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39592-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39592-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20256-1

  • Online ISBN: 978-3-540-39592-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics