Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 148))

Abstract

Grammar systems is a recent field of formal language theory providing syntactic models and frameworks for describing and studying (the behaviour of) multi-agent systems at the symbolic level. The theory has been inspired and influenced by several scientific areas: distributed and decentralized artificial intelligence, distributed and parallel computing, artificial life, molecular computing, robotics, ecology, sociology, etc. Computer networks, parallel and distributed computer architectures, distributed and cooperative text processing, natural language processing are candidates for possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Abrahamson, L. Cai, and S. Gordon. A grammar characterization of logarithmic space computation. In Gh. Pun and A. Salomaa, editors, New Trends in Formal Languages. Control, Cooperation and Combinatorics volume 1218 of Lecture Notes in Computer Science, pages 147–155. Springer-Verlag, 1997.

    Google Scholar 

  2. K. Arthi and K. Krithivasan. Probabilistic parallel communicating grammar systems. International Journal of Computer Mathematics, 79 (1): 1–26, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Arthi, K. Krithivasan, and E. Csuhaj-Varjú. On rule-number complexity of components of probabilistic cooperating distributed grammar systems. Journal of Automata, Languages and Combinatorics, 7 (4): 433–446, 2002.

    MathSciNet  MATH  Google Scholar 

  4. A. Atanasiu and V. Mitrana. The modular grammars. International Journal of Computer Mathematics, 30: 101–122, 1989.

    Article  Google Scholar 

  5. T. Bâlânescu, T. Cowling, H. Georgescu, M. Gheorghe, M. Holcombe, and C. Vertan. Communicating stream X-machines systems are no more than X-machines. Journal of Universal Computer Science, 5 (9): 494–507, 1995.

    Google Scholar 

  6. T. Bâlânescu, H. Georgescu, and M. Gheorghe. Grammar systems with counting derivation and dynamical priorities. In Gh. Päun and A. Salomaa editors, New Trends in Formal Languages. Control, Cooperation and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 150–166. Springer, Berlin, 1997.

    Google Scholar 

  7. M. H. ter Beek. Teams in grammar systems: hybridity and weak rewriting. Acta Cybernetica, 12 (4): 427–444, 1996.

    MathSciNet  MATH  Google Scholar 

  8. M. H. ter Beek. Teams in grammar systems: sub-context-free cases. In Gh. Pâun and A. Salomaa editors, New Trends in Formal Languages. Control, Cooperation and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 197–216. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  9. H. Bordihn and E. Csuhaj-Varjú. On competence and completeness in CD grammar systems. Acta Cybernetica, 12 (4): 347–360, 1996.

    MathSciNet  MATH  Google Scholar 

  10. H. Bordihn, E. Csuhaj-Varjú, and J. Dassow. CD grammar systems versus L systems. In Gh. Nun and A. Salomaa editors, Grammatical Models of Multi-Agent Systems, pages 18–32. Gordon and Breach, Amsterdam, 1999.

    Google Scholar 

  11. H. Bordihn and M. Holzer. Grammar systems with negated conditions in their cooperation protocols. Journal of Universal Computer Science 6 (12): 1165–1184, 2000.

    MathSciNet  MATH  Google Scholar 

  12. H. Bordihn and M. Holzer. On the number of active symbols in L and CD grammar systems. Journal of Automata, Languages and Combinatorics 6 (4): 411–426, 2001.

    MathSciNet  MATH  Google Scholar 

  13. H. Bordihn and B. Reichel. On descriptions of context-free languages by CD grammar systems. Journal of Automata, Languages and Combinatorics, 7 (4): 447–454, 2002.

    MathSciNet  MATH  Google Scholar 

  14. L. Cai. Computational completeness of linear PCGSs. Computers and Artificial Intelligence, 15 (2–3): 199–210, 1996.

    MathSciNet  MATH  Google Scholar 

  15. L. Cai. The computational complexity of PCGS with regular components. In Proceedings of the 2nd International Conference on Developments in Language Theory,pages 209–219, Singapore, 1996. World Scientific Publishers.

    Google Scholar 

  16. J. Castellanos, C. Martin-Vide, V. Mitrana, and J. Sempere. Networks of evolutionary processors. Acta Informatica, 39 (6–7): 517–529, 2003.

    MathSciNet  MATH  Google Scholar 

  17. E. Csuhaj-Varjú. Grammar systems: A framework for natural language generation. In Gh. Nun editor, Mathematical Aspects of Natural and Formal Languages, World Scientific Series in Computer Science 43, pages 63–78. World Scientific, Singapore, 1994.

    Google Scholar 

  18. E. Csuhaj-Varjú. Networks of language processors. EATCS Bulletin, 63: 120–134, 1997.

    Google Scholar 

  19. E. Csuhaj-Varjú. On size complexity of context-free returning parallel communicating grammar systems. In C. Martin-Vide and V. Mitrana editors, Where Mathematics, Computer Science, Linguistics and Biology Meet. pages 37–49. Kluwer Acedemic Publishers, Dordrecht, 2001.

    Google Scholar 

  20. E. Csuhaj-Varjú. Computing by networks of standard Watson-Crick DOL systems. communicating grammar systems. In M. Ito editor, Proc. Workshop Algebraic Systems, Languages and Computations, March 21–23, 2000, Kyoto, pages 43–51. RIMS Kokyuroku 1116, 2000.

    Google Scholar 

  21. E. Csuhaj-Varjú and J. Dassow. On cooperating/distributed grammar systems. Journal of Information Processing and Cybernetics EIK,26(1–2):49–63, 1990. Presented at the 4th Workshop on Mathematical Aspects of Computer Science, Magdeburg, 1988.

    Google Scholar 

  22. E. Csuhaj-Varjú, J. Dassow, and Gh. Nun. Dynamically controlled cooperating/distributed grammar systems. Information Sciences, 69 (1–2): 1–25, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and Gh. Nun. Grammar Systems. A Grammatical Approach to Distribution and Cooperation. Topics in Computer Mathematics 8. Gordon and Breach Science Publishers, Yverdon, 1994.

    Google Scholar 

  24. E. Csuhaj-Varjú, J. Dassow, J. Kelemen, and Gh. Nun. Stratified grammar systems. Computers and Artificial Intelligence,13(5):409–422

    Google Scholar 

  25. E. Csuhaj-Varjú, L. Kari, and Gh. Nun. Test tube distributed systems based on splicing. Computers and Artificial Intelligence, 15 (2–3): 211–232, 1996.

    MathSciNet  MATH  Google Scholar 

  26. E. Csuhaj-Varjú and J. Kelemen. Cooperating grammar systems: A syntactical framework for blackboard model of problem solving. In I. Plander, editor, Proceedings of the Conference on Artificial Intelligence and Information Control System of Robots, AIICSR’89, pages 121–127. Elsevier Publishing Company, Amsterdam, 1989.

    Google Scholar 

  27. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenovâ, and Gh. Pâun. Eco(grammar) systems. A preview. In R. Trappl, editor, Proc 12th European Meeting on Cybernetics and System Research, pages 941–948. World Scientific Publishers, Singapore, 1994.

    Google Scholar 

  28. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenovâ., and Gh. Pâun. Eco-grammar systems: A grammatical framework for studying lifelike interactions. Artificial Life, 3: 1–28, 1997.

    Article  Google Scholar 

  29. E. Csuhaj-Varjú, J. Kelemen, and Gh. Pâun. Grammar systems with WAVE-like communication. Computers and Artificial Intelligence, 15 (5): 419–436, 1996.

    MathSciNet  Google Scholar 

  30. E. Csuhaj-Varjú, C. Martin-Vide, V. Mitrana, and Gy. Vaszil. Parallel communicating pushdown automata systems. International Journal of Foundations of Computer Science, 11 (4): 633–650, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Csuhaj-Varjú, V. Mitrana, and Gy. Vaszil. Distributed pushdown automata systems: Computational power. In Z. Ésik and Z. Fülöp, editors, Developments in Language Theory. 7th International Conference., volume 2710 of Lecture Notes in Computer Science, pages 218–229. Springer-Verlag, 2003.

    Google Scholar 

  32. E. Csuhaj-Varjú and A. Salomaa. Networks of parallel language processors. In Gh. Pâun and A. Salomaa, editors, New Trends in Formal Languages; Control, Cooperation, and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 299–318. Springer-Verlag, 1997.

    Google Scholar 

  33. E. Csuhaj-Varjú and A. Salomaa. Networks of language processors: Parallel communicating systems. EATCS Bulletin, 66: 122–138, 1998.

    MATH  Google Scholar 

  34. E. Csuhaj-Varjú and A. Salomaa. Networks of Watson-Crick DOL systems. In M. Ito and T. Imaoka, editors, Words, Languages and Combinatorics III, World Scientific, 2003.

    Google Scholar 

  35. E. Csuhaj-Varjú and Gy. Vaszil. On the computational completeness of context-free parallel communicating grammar systems. Theoretical Computer Science, 215 (1–2): 349–358, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  36. E. Csuhaj-Varjú and Gy. Vaszil. On context-free parallel communicating grammar systems: Synchronization, communication, and normal forms. Theoretical Computer Science, 255: 511–538, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Csuhaj-Varjú and Gy. Vaszil. Parallel communicating grammar systems with incomplete information communication. Grammars, 5: 153–176, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Csuhaj-Varjú and Gy. Vaszil. Parallel communicating grammar systems with bounded resources. Theoretical Computer Science, 276: 205–219, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  39. E. Csuhaj-Varjú, Gh. Pâun, and Gy. Vaszil. PC grammar systems with five context-free components generate all recursively enumerable languages. Theoretical Computer Science, 299: 785–794, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  40. E. Csuhaj-Varjú and Gy. Vaszil. An annotated bibliography of grammar systems. http://www.sztaki.hu/mms/bib.html

    Google Scholar 

  41. J. Dassow. A remark on cooperating distributed grammar systems controlled by graphs. Wissenschaftliche Zeitung T. U. Magdeburg, 35: 4–6, 1991.

    MathSciNet  MATH  Google Scholar 

  42. J. Dassow, R. Freund, and Gh. Pâun. Cooperating array grammar systems. International Journal of Pattern Recognition and Artificial Intelligence, 9 (6): 1029–1053, 1995.

    Article  Google Scholar 

  43. J. Dassow and V. Mitrana. Fairness in grammar systems. Acta Cybernetica, 12 (4): 331–345, 1996.

    MathSciNet  MATH  Google Scholar 

  44. J. Dassow, J. Kelemen, and Gh. Pâun. On parallelism in colonies. Cybernetics and Systems: An International Journal, 24 (1): 37–49, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Dassow and V. Mitrana Stack cooperation in multi-stack pushdown automata. Journal of Computer and System Sciences 58: 611–621, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Dassow, V. Mitrana, Gh. Flinn, and S. Vicolov. On determinism in cooperating distributed grammar systems. Publicationes Mathematicae 48(3–4):217–231, 1996.

    MATH  Google Scholar 

  47. J. Dassow and Gh. Pâun. Regulated Rewriting in Formal Language Theory. Springer-Verlag, Berlin, 1989.

    Book  Google Scholar 

  48. J. Dassow and Gh. Pâun. On some variants of cooperating/distributed grammar systems. Studii Cercetiiri Matematice, 42: 153–165, 1990.

    MATH  Google Scholar 

  49. J. Dassow and Gh. nun. Cooperating/distributed grammar systems with registers. Foundations of Control Engineering, 15 (1): 19–38, 1990.

    MathSciNet  MATH  Google Scholar 

  50. J. Dassow and Gh. Pâun. On the succinctness of descriptions of context-free languages by cooperating/distributed grammar systems. Computers and Artificial Intelligence, 10 (6): 513–527, 1991.

    MathSciNet  MATH  Google Scholar 

  51. J. Dassow, Gh. Pâun, and G. Rozenberg. Grammar systems. In A. Salomaa and G. Rozenberg, editors, Handbook of Formal Languages, volume 2, chapter 4, pages 155–213. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  52. S. Dumitrescu. Non-returning PC grammar systems can be simulated by returning systems. Theoretical Computer Science, 165: 463–474, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  53. S. Dumitrescu and Gh. nun. On the power of parallel communicating grammar systems with right-linear components. RA IRO Informatique Theoretique et Applications, 31 (4): 331–354, 1997.

    MATH  Google Scholar 

  54. S. Dumitrescu, Gh. nun, and A. Salomaa. Pattern languages versus parallel communicating grammar systems. International Journal of Foundations of Computer Science, 8 (1): 67–80, 1997.

    Article  MATH  Google Scholar 

  55. H. Fernau and M. Holzer. Accepting multi-agent systems. H. Acta Cybernetica, 12 (4): 361–379, 1996.

    MathSciNet  MATH  Google Scholar 

  56. H. Fernau, M. Holzer, and H. Bordihn. Accepting multi-agent systems: the case of cooperating distributed grammar systems. Computers and Artificial Intelligence, 15 (2–3): 123–139, 1996.

    MathSciNet  MATH  Google Scholar 

  57. H. Fernau, M. Holzer, and R. Freund. Hybrid modes in cooperating distributed grammar systems: internal versus external hybridization. Theoretical Computer Science, 259: 405–426, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Fernau, M. Holzer, and R. Freund. Hybrid modes in cooperating distributed grammar systems: combining the t-mode with the modes k and = k. Theoretical Computer Science, 299 (1–3): 633–662, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Freund, Gh. P Inn, C. M. Procopiuc, and O. Procopiuc. Parallel communicating grammar systems with context-sensitive components. In Gh. nun, editor, Artificial Life. Grammatical Models, pages 166–174. The Black Sea University Press, Bucharest, 1995.

    Google Scholar 

  60. Z. Fülöp. Distributed tree processing devices. Computers and Artificial Intelligence, 18 (1): 37–71, 1999.

    MathSciNet  MATH  Google Scholar 

  61. J. Hromkovic. On the communication complexity of distributed language generation. In J. Dassow, G. Rozenberg, and A. Salomaa, editors, Developments in Language Theory II, pages 237–246. World Scientific Publishers, 1996.

    Google Scholar 

  62. J. Hromkovic, J. Kari, and L. Kari. Some hierarchies for the communication complexity measures of cooperating grammar systems. Theoretical Computer Science, 127: 123–147, 1993.

    Article  MathSciNet  Google Scholar 

  63. Grammar Systems 307

    Google Scholar 

  64. J. Hromkovic, J. Kari, L. Kari, and D. Pardubskâ. Two lower bounds on distributive generation of languages. In MFCS’94, volume 841 of Lecture Notes in Computer Science, pages 423–432. Springer-Verlag, 1994.

    Google Scholar 

  65. L. Ilie and A. Salomaa 2-testability and relabelings produce everything. Journal of Computer and System Sciences, 56 (3): 253–262, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  66. C.M. Ionescu and O. Procopiuc. Bounded communication in parallel communicating grammar systems. Journal of Information Processing and Cybernetics, 30 (2): 97–110, 1994.

    MathSciNet  MATH  Google Scholar 

  67. M.D. Jiménez-López and C. Martin-Vide. Grammar systems for the description of certain natural language facts. In Gh. Pun and A. Salomaa, editors, New Trends in Formal Languages; Control, Cooperation and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 288–298. Springer-Verlag, 1997.

    Google Scholar 

  68. M.D. Jiménez-López. Grammar Systems: A Formal-Language-Theoretic Framework for Linguistics and Cultural Evolution. Ph. D. Dissertation, Rovira i Virgili University, Tarragona, 2000.

    Google Scholar 

  69. M.D. Jiménez-López. Linguistic grammar systems: A grammar systems approach to natural languages. In C. Martin-Vide and V. Mitrana editors, Grammars and Automata for String Processing: from Mathematics and Computer Science to Biology, and Back, pages 55–65. Taylor and Francis, London, 2003.

    Chapter  Google Scholar 

  70. J. Kari and L. Sântean. The impact of the number of cooperating grammars on the generative power. Theoretical Computer Science, 98: 621–633, 1992.

    Google Scholar 

  71. L. Kari, A. Mateescu, Gh. Pâun, and A. Salomaa. Teams in cooperating grammar systems. Journal of Experimental and Theoretical Artificial Intelligence, 7: 347–359, 1995.

    Article  MATH  Google Scholar 

  72. J. Kelemen. Syntactic models of distributed cooperative systems. Journal of Experimental and Theoretical Artificial Intelligence, 3: 1–10, 1991.

    Article  Google Scholar 

  73. J. Kelemen. Grammar-theoretic models of multi-agent systems. Kybernetes, 23 (2): 43–50, 1994.

    Article  MathSciNet  Google Scholar 

  74. J. Kelemen. Artificial life-describing life-like behaviors in computational frameworks. In Gh. Pâun, editor, Artificial Life. Grammatical Models, pages 1–21. The Black Sea University Press, Bucharest, 1995.

    Google Scholar 

  75. J. Kelemen. Colonies as models of reactive systems. In Gh. Pâun and A. Salomaa editors, New Trends in Formal Languages. Control, Cooperation and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 220235. Springer, Berlin, 1997.

    Google Scholar 

  76. J. Kelemen. On post-modularity and emergence from grammar-theoretic point of view. In P. Sincak and J. Vascak editors, Quo Vadis Computational Intelligence?, pages 342–352. Physica-Verlag, Heidelberg, 2000.

    Google Scholar 

  77. J. Kelemen. From statistics to emergence-exercises in systems modularity. In M. Luck et al. editors, Multi-Agent Systems and Applications, volume 2086 of Lecture Notes in Computer Science, pages 281–300. Springer, Berlin, 2001.

    Google Scholar 

  78. J. Kelemen and A. Kelemenovâ. A subsumption architecture for generative symbol systems. In R. Trappl editor, Cybernetics and Systems’92, pages 15291536. World Scientific, Singapore, 1992.

    Google Scholar 

  79. J. Kelemen and A. Kelemenovâ. A grammar-theoretic treatment of multiagent systems. Cybernetics and Systems: An International

    Google Scholar 

  80. K. Krithivasan, M. Sakthi Balan, and P. Harsha. Distributed processing in automata. International Journal of Foundations of Computer Science,10(4):443–464, 1999.

    Article  MathSciNet  Google Scholar 

  81. N. Mandache. On the computational power of context-free PC grammar systems. Theoretical Computer Science, 237 (1–2): 135–148, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  82. C. Martin-Vide. Natural language understanding: A new challenge for grammar systems. Acta Cybernetica, 12 (4): 461–472, 1996.

    MATH  Google Scholar 

  83. C. Martin-Vide, A. Mateescu, and V. Mitrana Parallel finite automata systems communicating by states. International Journal of Foundations of Computer Science, 12 (5): 733–749, 2002.

    Article  MathSciNet  Google Scholar 

  84. A. Mateescu, V. Mitrana, and A. Salomaa. Dynamical teams of cooperating grammar systems. Annales Univ. Bucure§ti Mat. Inform.,42(43)(MatematicaInformatica):3–14, 1993/94.

    Google Scholar 

  85. C. Martin-Vide and Gh. Pâun. PM-colonies. Computers and Artificial Intelligence, 17 (6): 553–582, 1998.

    MathSciNet  MATH  Google Scholar 

  86. R. Meersman and G. Rozenberg. Cooperating grammar systems. In J. Winkowski editor, Proceedings of Mathematical Foundations of Computer Science, 1978, volume 64 of Lecture Notes in Computer Science, pages 364–373. Springer, Berlin-New York, 1978.

    Google Scholar 

  87. V. Mihalache. Parallel communicating grammar systems with query words. Analele Universitäfii Bucuregi. Matematici-Informatics, 45 (1): 81–92, 1996.

    MathSciNet  Google Scholar 

  88. V. Mihalache. Parallel communicating grammar systems with separated alphabets. Acta Cybernetica, 12 (4): 397–409, 1996.

    MathSciNet  MATH  Google Scholar 

  89. V. Mihalache. Decidability problems in grammar systems. Theoretical Computer Science, 215 (1–2): 169–189, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  90. V. Mihalache and V. Mitrana. Deterministic cooperating distributed grammar systems. In Gh. Pun and A. Salomaa editors, New Trends in Formal Languages. Control, Cooperation and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 137–149. Springer, Berlin, 1997.

    Google Scholar 

  91. V. Mitrana. Hybrid cooperating/distributed grammar systems. Computers and Artificial Intelligence, 12 (1): 83–88, 1993.

    MathSciNet  Google Scholar 

  92. V. Mitrana. Similarity in grammar systems. Fundamenta Informaticae, 24 (3): 251–257, 1995.

    MathSciNet  MATH  Google Scholar 

  93. V. Mitrana, Gh. Päun, and G. Rozenberg. Structuring grammar systems by priorities and hierarchies. Acta Cybernetica, 11 (3): 189–204, 1994.

    MathSciNet  MATH  Google Scholar 

  94. D. Pardubskâ. The communication complexity hierarchy of parallel communicating grammar systems. In J. Dassow and A. Kelemenovâ, editors, Developments in Theoretical Computer Science, pages 115–122. Gordon and Breach Science Publishers, London, 1992.

    Google Scholar 

  95. D. Pardubskâ. On the power of communication structure for distributive generation of languages. In G. Rozenberg and A. Salomaa, editors, Developments in Language Theory, pages 419–429. World Scientific Publishers, 1994.

    Google Scholar 

  96. Gh. Pâun. On the power of synchronization in parallel communicating grammar systems. Studii Cerecetäri Matematice, 41 (3): 191–197, 1989.

    MATH  Google Scholar 

  97. Gh. Pâun. Parallel communicating grammar systems: The context-free case. Foundations of Control Engineering, 14 (1): 39–50, 1989.

    MathSciNet  MATH  Google Scholar 

  98. Gh. Pâun. On the syntactic complexity of parallel communicating grammar systems. Kybernetika, 28 (2): 155–166, 1992.

    MathSciNet  MATH  Google Scholar 

  99. Gh. nun. Parallel communicating systems of L systems. In G. Rozenberg and A. Salomaa, editors, Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology, pages 405–418. Springer-Verlag, 1992.

    Google Scholar 

  100. Gh. nun. On the synchronization in parallel communicating grammar systems. Acta Informatica, 30: 351–367, 1993.

    Article  Google Scholar 

  101. Gh. nun. On the generative capacity of hybrid CD grammar systems. Journal of Information Processing and Cybernetics EIK, 30 (4): 231–244, 1994.

    Google Scholar 

  102. Gh. nun. Membrane Computing. An Introduction., Springer-Verlag, Berlin, 2002.

    Google Scholar 

  103. Gh. nun, J. Dassow, and S. Skalla. On the size of components of cooperating grammar systems. In J. Karhumäki, H.A. Maurer, and G. Rozenberg editors, Results and Trends in Theoretical Computer Science, volume 812 of Lecture Notes in Computer Science, pages 325–343. Springer, Berlin, 1994.

    Google Scholar 

  104. G. nun, V. Mitrana, E. Csuhaj-Varjú, and J. Dassow. Cooperation in grammar systems: similarity, universality, timing. Cybernetica, 36 (4): 271–286, 1993.

    MathSciNet  Google Scholar 

  105. Gh. nun, L. Polkowski, and A. Skowron. Parallel communicating grammar systems with negotiation. Fundamenta Informaticae, 28 (3–4): 315–330, 1996.

    MathSciNet  Google Scholar 

  106. Gh. nun and G. Rozenberg. Prescribed teams of grammars. Acta Informatica, 31 (6): 525–537, 1994.

    Article  MathSciNet  Google Scholar 

  107. Gh. nun, A. Salomaa, and S. Vicolov. On the generative capacity of parallel communicating grammar systems. International Journal of Computer Mathematics, 45: 45–59, 1992.

    Google Scholar 

  108. Gh. nun and L. Sântean. Parallel communicating grammar systems: The regular case. Annals of the University of Bucharest, Mathematics-Informatics Series, 38 (2): 55–63, 1989.

    Google Scholar 

  109. Gh. nun and L. Sântean. Further remarks on parallel communicating grammar systems. International Journal of Computer Mathematics, 34: 187–203, 1990.

    Article  Google Scholar 

  110. D. Popescu. Parallel communicating grammar systems with communication by signals. In Gh. nun and A. Salomaa, editors, New Trends in Formal Languages; Control, Cooperation, and Combinatorics, volume 1218 of Lecture Notes in Computer Science, pages 267–277. Springer-Verlag, Berlin, 1997.

    Google Scholar 

  111. O. Procopiuc, C. M. Ionescu, and F. L. Tiplea. Parallel communicating grammar systems: The context-sensitive case. International Journal of Computer Mathematics, 49: 145–156, 1993.

    Article  MATH  Google Scholar 

  112. B. Reichel. Some classification of context-free languages. Journal of Information Processing and Cybernetics EIK, 26 (1–2): 85–99, 1990.

    MathSciNet  MATH  Google Scholar 

  113. F. L. Tiplea, C. Ene, C. M. Ionescu, and O. Procopiuc. Some decision problems for parallel communicating grammar systems. Theoretical Computer Science, 134: 365–385, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  114. Gy. Vaszil. Parallel communicating grammar systems without a master. Computers and Artificial Intelligence, 15 (2–3): 185–198, 1996.

    MathSciNet  MATH  Google Scholar 

  115. Gy. Vaszil. On simulating non-returning PC grammar systems with returning systems. Theoretical Computer Science, 209: 319–329, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  116. Gy. Vaszil. On parallel communicating Lindenmayer systems. In Gh. Pun and A. Salomaa, editors, Grammatical Models of Multi-Agent Systems, volume 8 of Topics in Computer Mathematics, pages 99–112. Gordon and Breach Science Publishers, 1999.

    Google Scholar 

  117. S. Vicolov. Non-centralized parallel communicating grammar systems. Studii 0 Cercetäri Matematice. Mathematical Reports, 44 (5): 455–462, 1992.

    MathSciNet  MATH  Google Scholar 

  118. S. Vicolov. Cooperating/distributed grammar systems with registers: the regular case. Computers and Artificial Intelligence, 12 (1): 89–98, 1993.

    MathSciNet  Google Scholar 

  119. S. Vicolov-Dumitrescu. Grammars, grammar systems, and gsm mappings with valences. In Gh. Päun editor, Mathematical Aspects of Natural and Formal Languages, World Scientific Series in Computer Science 43, pages 473–491. World Scientific, Singapore, 1994.

    Google Scholar 

  120. D. Wätjen. On cooperating/distributed limited OL systems. Journal of Information Processing and Cybernetics EIK, 29: 129–142, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Csuhaj-Varjú, E. (2004). Grammar Systems. In: Martín-Vide, C., Mitrana, V., Păun, G. (eds) Formal Languages and Applications. Studies in Fuzziness and Soft Computing, vol 148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39886-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39886-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53554-3

  • Online ISBN: 978-3-540-39886-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics