Skip to main content

Financial Time Series Prediction Using Non-fixed and Asymmetrical Margin Setting with Momentum in Support Vector Regression

  • Chapter
Neural Information Processing: Research and Development

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 152))

Abstract

Recently, Support Vector Regression (SVR) has been applied to financial time series prediction. The financial time series usually contains the characteristics of small sample size, high noise and non-stationary. Especially the volatility of the time series is time-varying and embeds some valuable information about the series. Previously, we had proposed to use the volatility in the data to adaptively change the width of the margin in SVR. We have noticed that up margin and down margin would not necessary be the same, and also observed that their choice would affect the upside risk, downside risk and as well as the overall prediction performance. In this work, we introduce a novel approach to adopt the momentum in the asymmetrical margins setting. We applied and compared this method to predict the Hang Seng Index and Dow Jones Industrial Average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Baestaens. Neural Network Solutions for Trading in Financial Markets. London: Financial Times: Pitman Pub., 1994.

    Google Scholar 

  2. K. Bennett and E. Bredensteiner. Duality and Geometry in SVM Classifiers. In P. Langley, editor, Proc. of Seventeenth Intl. Conf. on Machine Learning, pages 57–64, San Francisco, 2000. Morgan Kaufmann.

    Google Scholar 

  3. B. E. Boser, I. Guyon, and V. N. Vapnik. A Training Algorithm for Optimal Margin Classifiers. In Computational Learing Theory, pages 144–152, 1992.

    Google Scholar 

  4. G. E. P. Box and G. M. Jenkins. Time-Series Analysis, Forecasting and Control. San Francisco: Holden-Day, third edition, 1994.

    MATH  Google Scholar 

  5. C. Burges and D. Crisp. Uniqueness of the SVM Solution. In S. A. Solla, T. K. Leen, and K. R. Müller, editors, Advances in Neural Information Processing Systems, volume 12, pages 223–229, Cambridge, MA, 2000. MIT Press.

    Google Scholar 

  6. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a Library for Support Vector Machines (version 2. 31 ), 2001.

    Google Scholar 

  7. C. Chatfield. The Analysis of Time Series: An Introduction. Chapman and Hall, fifth edition, 1996.

    Google Scholar 

  8. C. Chatfield. Time-Series Forecasting. Chapman and Hall/CRC, 2001.

    Google Scholar 

  9. B. Cheng and D. M. Titterington. Neural Networks: A Review from a Statistical Perspective. Statistical Science, 9: 2–54, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. New York: Wiley, London; New York, 1973.

    MATH  Google Scholar 

  11. C. W. J. Granger and A. P. Andersen. Introduction to Bilinear Time Series. Göttingen: Vandenhoeck and Ruprecht, 1978.

    MATH  Google Scholar 

  12. C. W. J. Granger and R. Joyeux. An Introduction to Long-Memory Time Series Models and Fractional Differencing. Journal of Time Series Analysis, 1, 1980.

    Google Scholar 

  13. S. Haykin. Neural Networks: A Comprehensive Foundation. Upper Saddle River, N. J.: Prentice Hall, 2nd edition, 1999.

    MATH  Google Scholar 

  14. A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM Computing Surveys, 31 (3): 264–323, 1999.

    Article  Google Scholar 

  15. S. Mukherjee, E. Osuna, and F. Girosi. Nonlinear Prediction of Chaotic Time Series Using Support Vector Machines. In J. Principe, L. Giles, N. Morgan, and E. Wilson, editors, IEEE Workshop on Neural Networks for Signal Processing VII, pages 511–519. IEEE Press, 1997.

    Google Scholar 

  16. K. R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to Kernel-Based Learning Algorithms. IEEE Transactions on Neural Networks, 12: 181–201, 2001.

    Article  Google Scholar 

  17. K. R. Müller, A. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, and V. Vapnik. Predicting Time Series with Support Vector Machines. In W. Gerstner, A. Germond, M. Hasler, and J. D. Nicoud, editors, ICANN, pages 999–1004. Springer, 1997.

    Google Scholar 

  18. Ian T. Nabney. Netlab: Algorithms for Pattern Recognition. Springer, London; New York, 2002.

    MATH  Google Scholar 

  19. D. F. Nicholls and A. Pagan. Varying Coefficient Regression. In E.J. Hannan, P.R. Krishnaiah,, and M.M. Rao, editors, Handbook of Statistics, volume 5, pages 413–449, North Holland, Amsterdam, 1985.

    Google Scholar 

  20. B. Schölkopf Pai-Hsuen Chen, Chih-Jen Lin. A Tutorial on v-Support Vector Machines. Technical report, National Taiwan University, 2003.

    Google Scholar 

  21. M. B. Priestley. Spectral Analysis and Time Series. New York: Academic Press, London, 1981.

    MATH  Google Scholar 

  22. J. R. Quinlan Induction of Decision Trees. Machine Learning, 1: 81–106, 1986.

    Google Scholar 

  23. Baldev Raj and Aman Ullah. Econometrics A Varying Coefficients Approach New York: St. Martin’s Press, 2nd edition, 1981.

    Google Scholar 

  24. B. Schölkopf, A. Smola, R. Williamson, and P. Bartlett. New Support Vector Algorithms. Technical Report NC2-TR-1998–031, GMD and Australian National University, 1998.

    Google Scholar 

  25. A. Smola, N. Murata, B. Schölkopf, and K.-R. Müller. Asymptotically Optimal Choice of e-Loss for Support Vector Machines. In Proc. of Seventeenth Intl. Conf. on Artificial Neural Networks, 1998.

    Google Scholar 

  26. A. Smola and B. Schölkopf. A Tutorial on Support Vector Regression. Technical Report NC2-TR-1998–030, NeuroCOLT2, 1998.

    Google Scholar 

  27. E. H. Tay and L. J. Cao. Application of Support Vector Machines to Financial Time Series Forecasting. Omega, 29: 309–317, 2001.

    Article  Google Scholar 

  28. H. Tong. Non-Linear Time Series. Clarendon Press, Oxford, 1990.

    MATH  Google Scholar 

  29. T. B. Trafalis and H. Ince. Support Vector Machine for Regression and Applications to Financial Forecasting. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN2000), volume 6, pages 348–353. IEEE, 2000.

    Google Scholar 

  30. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

    MATH  Google Scholar 

  31. V. N. Vapnik, S. Golowich, and A. Smola. Support Vector Method for Function Approximation, Regression Estimation and Signal Processing. In M. Mozer, M. Jordan, and T. Petshe, editors, Advances in Neural Information Processing Systems, volume 9, pages 281–287, Cambridge, MA, 1997. MIT Press.

    Google Scholar 

  32. C. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, England, 1989.

    Google Scholar 

  33. Haiqin Yang. Margin Variations in Support Vector Regression for the Stock Market Prediction. Master’s thesis, Chinese University of Hong Kong, 2003.

    Google Scholar 

  34. Haiqin Yang, Laiwan Chan, and Irwin King. Support Vector Machine Regression for Volatile Stock Market Prediction. In Hujun Yin, Nigel Allinson, Richard Freeman, John Keane, and Simon Hubbard, editors, Intelligent Data Engineering and Automated Learning - IDEAL 2002, volume 2412 of LNCS, pages 391–396. Springer, 2002.

    Google Scholar 

  35. Haiqin Yang, Laiwan Chan, and Irwin King. Margin Settings in Support Vector Regression for the Stock Market Prediction, 2003. To be submitted.

    Google Scholar 

  36. Haiqin Yang, Irwin King, and Laiwan Chan. Non-fixed and Asymmetrical Margin Approach to Stock Market Prediction Using Support Vector Regression. In International Conference on Neural Information Processing–ICONIP 2002, volume 3, pages 1398–1402, 2002.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, H., King, I., Chan, L., Huang, K. (2004). Financial Time Series Prediction Using Non-fixed and Asymmetrical Margin Setting with Momentum in Support Vector Regression. In: Rajapakse, J.C., Wang, L. (eds) Neural Information Processing: Research and Development. Studies in Fuzziness and Soft Computing, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39935-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39935-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53564-2

  • Online ISBN: 978-3-540-39935-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics