Skip to main content

Improving Chow-Liu Tree Performance by Mining Association Rules

  • Chapter
Neural Information Processing: Research and Development

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 152))

Abstract

We present a novel approach to construct a kind of tree belief network, in which the “nodes” are subsets of variables of dataset. We call this model Large Node Chow-Liu Tree (LNCLT). This technique uses the concept of the association rule as found in the database literature to guide the construction of the LNCLT. Similar to the Chow-Liu Tree (CLT), the LNCLT is also ideal for density estimation and classification applications. More importantly, our novel model partially solves the disadvantages of the CLT, i.e., the inability to represent non-tree structures, and is shown to be superior to the CLT theoretically. Moreover, based on the MNIST hand-printed digit database, we conduct a series of digit recognition experiments to verify our approach. From the result we find that both the approximation accuracy and the recognition rate on the data are improved with the LNCLT structure, when compared with the CLT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proceedings of International Conference on Very Large Data Bases (VLDB-1994), 1994.

    Google Scholar 

  2. R. Bakis, M. Herbst, and G. Nagy. An experimental study of machine recognition of hand-printed numerals. IEEE Transactions on Systems Science and Cybernetics, SSC-4(2), JULY 1968.

    Google Scholar 

  3. C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory, 14: 462–467, 1968.

    Article  MATH  Google Scholar 

  4. S. Dasguota. Learning polytrees. In Uncertainty in Artificial Intelligence, 1999.

    Google Scholar 

  5. P. Domingos and M. J. Pazzani. On the optimality of the simple baysian classifier under zero-one loss. Machine Learning, 29: 103–130, 1997.

    Article  MATH  Google Scholar 

  6. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of continuous features. In International Conference on Machine Learning, pages 194–202, 1995.

    Google Scholar 

  7. G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables:a structure-based approach. In NIPS 13, 2001.

    Google Scholar 

  8. N. Friedman and G. Elidan. Learning the dimensionality of hidden variables. In Proceedings of Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI), 2001.

    Google Scholar 

  9. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29: 131–161, 1997.

    Article  MATH  Google Scholar 

  10. J. Hipp, U. Guntzer, and G. Nakhaeizadeh. Algorithms for association rule mining-a general survey and comparison. ACM SIGKDD Explorations, 2: 5864, July 2000.

    Article  Google Scholar 

  11. K. Huang, I. King, and M. R. Lyu. Constructing a large node chow-liu tree based on frequent itemsets. In Lipo Wang, Jagath C. Rajapakse, Kunihiko Fukushima, Soo-Young Lee, and Xi Yao, editors, Proceedings of the International Conference on Neural Information Processing (ICONIP-2002), Orchid Country Club, Singapore, pages 498–502, 2002.

    Google Scholar 

  12. K. Huang, I. King, and M. R. Lyu. Learning maximum likelihood semi-naive bayesian network classifier. In Proceedings of IEEE International Conference on Systems, Man and Cybernetics (SMC-2002), Hammamet, Tunisia, 2002.

    Google Scholar 

  13. K. Huang, I. King, and M. R. Lyu. Discriminative training of bayesian chowliu tree multinet classifiers. In Proceedings of International Joint Conference on Neural Network(IJCNN-2003), Oregon, Portland, U.S.A., volume 1, pages 484–488, 2003.

    Google Scholar 

  14. K. Huang, I. King, and M. R. Lyu. Finite mixture model of bound semi-naive bayesian network classifier. In Joint 13th International Conference on Artificial Neural Network (ICANN-2003) and 10th International Conference on Neural Information Processing (ICONIP-2003), Long paper, Lecture Notes in Computer Science, pages 115–122, 2003.

    Google Scholar 

  15. D. Karger and N. Srebro. Learning markov networks: maximum bounded tree-width graphs. In Symposium on Discrete Algorithms, pages 392–401, 2001.

    Google Scholar 

  16. R. Kohavi. A study of cross validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI-1995), pages 338–345. San Francisco, CA: Morgan Kaufmann, 1995.

    Google Scholar 

  17. R. Kohavi, B. Becker, and D Sommerfield. Improving simple bayes. In Technique report. Data Mining and Visualization Group, Silicon Graphics Inc., Mountain View, CA., 1997.

    Google Scholar 

  18. I. Kononenko. Semi-naive bayesian classifier. In Proceedings of Sixth European Working Session on Learningpages 206–219. Springer-Verlag, 1991.

    Google Scholar 

  19. P. Langley. Induction of recursive bayesian classifiers.In Proceedings of the 1993 European Conference on Machine learningpages 153–164, 1993.

    Google Scholar 

  20. P. Langley and S. Sage. Induction of selective bayesian classifiers. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence (UAI-1994), pages 399–406. San Francisco, CA: Morgan Kaufmann, 1994.

    Google Scholar 

  21. Y. Le Cun. http://www.research.att.com/ yann/exdb/mnist/index.html.

    Google Scholar 

  22. F. M. Malvestuto. Approximating discrete probability distributions with decomposable models. IEEE Transactions on Systems, Man and Cybernetics, 21 (5): 1287–1294, 1991.

    Article  Google Scholar 

  23. M. Meila and M. Jordan. Learning with mixtures of trees. Journal of Machine Learning Research, 1: 1–48, 2000.

    MathSciNet  Google Scholar 

  24. T. Niblett. Constructing decision trees in noisy domains. In Proceedings of the Second European Working Session on Learningpages 67–78, 1987.

    Google Scholar 

  25. M. J. Pazzani. Searching dependency in bayesian classifiers. In D. Fisher and 11.-J. Lenz, editors, Learning from data: Artificial intelligence and statistics V, pages 239–248. New York, NY: Springer-Verlag, 1996.

    Google Scholar 

  26. J. Pearl. Probabilistic Reasoning in Intelligent Systems: networks of plausible inference. Morgan Kaufmann, CA, 2nd edition, 1997.

    Google Scholar 

  27. J. R. Quinlan. C4.5: programs for machine learning. San Mateo, California:Morgan Kaufmann Publishers, 1993.

    Google Scholar 

  28. M. Sahami. Learning limited dependence bayesian classifiers. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pages 335–338. Portland, OR: AAAI Press, 1996.

    Google Scholar 

  29. N. Srebro. Maximum likelihood bounded tree-width markov networks. MIT Master thesis2001.

    Google Scholar 

  30. A. Stolcke and S. Omohundro. Hidden markov model induction by bayesian model merging. In NIPS 5, pages 11–18, 1993.

    Google Scholar 

  31. A. Stolcke and S. Omohundro. Inducing probabilistic grammars by bayesian model merging. In International Conference on Grammatical Inference, 1994.

    Google Scholar 

  32. G. Webb and M. J. Pazzani. Adjusted probability naive bayesian induction. In the eleventh Australian Joint Conference on Artificial Intelligence, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, K., King, I., Lyu, M.R., Yang, H. (2004). Improving Chow-Liu Tree Performance by Mining Association Rules. In: Rajapakse, J.C., Wang, L. (eds) Neural Information Processing: Research and Development. Studies in Fuzziness and Soft Computing, vol 152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39935-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39935-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53564-2

  • Online ISBN: 978-3-540-39935-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics