Skip to main content

Characteristics of Biological Networks

  • Part IV Biological Networks
  • Chapter
  • First Online:
Complex Networks

Part of the book series: Lecture Notes in Physics ((LNP,volume 650))

Abstract

Network principles describe uniformly systems as diverse as the cell or the Internet. The emergence of these networks is driven by self-organizing processes that are governed by simple but generic laws. While unraveling the complex and interwoven systems of different interacting units, it has become clear that the topology of networks of different origin share the same characteristics on the large scale. In biological systems, networks appear in many different disguises ranging from protein interactions to metabolic networks. In this paper, we survey the most prominent characteristics of biological networks focusing on the emergence of scale-free architecture and hierarchical arrangement of functional modules. Finally, we present empirical evidence that cohesive parts of the protein interaction network have a significantly higher tendency to be evolutionary conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Rev. Mod. Phys., 74:47–97, 2002.

    Google Scholar 

  • 2. S. N. Dorogovtsev and J. F. F. Mendes. Evolution of Random Networks. Adv. Phys., 51:1079–1187, 2002.

    Google Scholar 

  • 3. A. Pandey and M. Mann. Proteomics to study genes and genomes. Nature, 405:837 – 846, 2000.

    Google Scholar 

  • 4. H. Caron, B. van Schaik, M. van der Mee, F. Baas, G. Riggins, P. van Sluis, M.-C. Hermus, R. van Asperen, K. Boon, P. A. Voute, S. Heisterkamp, A. van Kampen, and R. Versteeg. The Human Transcriptome Map: Clustering of Highly Expressed Genes in Chromosomal Domains. Science, 291:1289–1292, 2001.

    Google Scholar 

  • 5. C.B. Burge. Chipping away at the transcriptome. Nature Genet., 27:232–234, 2001.

    Google Scholar 

  • 6. M. Flajolet, G. Rotondo, L. Daviet, F. Bergametti, G. Inchauspe, P. Tiollais, C. Transy, and P. Legrain. A genomic approach to the hepatitis c virus. Gene, 242:369–379, 2000.

    Google Scholar 

  • 7. S. McGraith, T. Holtzman, B. Moss, and S. Fields. Genome-wide analysis of vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci. USA, 97:4879–4884, 2000.

    Google Scholar 

  • 8. J.-C. Rain, L. Selig, H. DeReuse, V. Battaglia, C. Reverdy, S. Simon, G. Lenzen, F. Petel, J. Wojcik, V. Schächter, et al. The protein-protein interaction map of Helicobacter pylori. Nature, 409:211–215, 2001.

    Google Scholar 

  • 9. T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki. Towards a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proc. Nat. Acad. Sci. USA, 97(3):1143–1147, 2000.

    Google Scholar 

  • 10. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Nat. Acad. Sci. USA, 98(8):4569–4574, 2001.

    Google Scholar 

  • 11. B. Schwikowski, P. Uetz, and S. Fields. A network of protein-protein interactions in yeast. Nature Biotechn., 18:1257–1261, 2000.

    Google Scholar 

  • 12. P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S Judson, J.R. Knight, D. Lockshorn, V. Narayan, M. Srinivasan, P. Pochart, et al. A comprehensive analysis of protein-protein interactions of Saccharomyces cerevisiae. Nature, 403:623–627, 2000.

    Google Scholar 

  • 13. A.C. Gavin, M. Bösche, R. Krause, P. Grandi, M. Marzioch, A. Bauer, J. Schultz, J.M. Rick, A.-M. Michon, C.-M. Cruciat, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415:141–147, 2002.

    Google Scholar 

  • 14. Y. Ho, A. Gruhler, A. Heilbut, G.D. Bader, L. Moore, S.-L. Adams, A. Millar, P. Taylor, K. Bennett, K. Boutillier, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415:180 – 183, 2002.

    Google Scholar 

  • 15. H. Jeong, S.P. Mason, A.-L. Barabási, and Z.N. Oltvai. Lethality and centrality in protein networks. Nature, 411:41–42, 2001.

    Google Scholar 

  • 16. A.J.M. Walhout, R. Sordella, X.W. Lu, J.L. Hartley, G.F. Temple, M.A. Brasch, N. Thierry-Mieg, and M. Vidal. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science, 287:116–122, 2000.

    Google Scholar 

  • 17. S. Li, C.M. Armstrong, N. Bertin, H. Ge, S. Milstein, M. Boxem, P.-O. Vidalain, J.-D.J. Han, A. Chesneau, T. Ha, et al. A map of the interactome network of the metazoan C. elegans. Science, 303:540–543, 2004.

    Google Scholar 

  • 18. L. Giot, J.S. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y.L. Hao, C.E. Ooi, B. Godwin, E. Vitols, et al. A protein interaction map of Drosophila melanogaster. Science, 302:1727–1736, 2004.

    Google Scholar 

  • 19. S. Wuchty. Interaction and Domain Networks of Yeast. Proteomics, 2:1715–1723, 2002.

    Google Scholar 

  • 20. A. Wagner. The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Redundant Duplicate Genes. Mol. Biol. Evol, 18(7):1283–1292, 2001.

    Google Scholar 

  • 21. R. Overbeek, N. Larsen, G.D. Pusch, M. D’Souza, E. Selkov Jr, N. Kyrpides, M. Fonstein, N. Maltsev, and E. Selkov. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res., 28:123–125, 2000.

    Google Scholar 

  • 22. P. D. Karp, M. Riley, M. Saier, I.T. Paulsen, S.M. Paley, and A. Pellegrini-Toole. The EcoCyc and MetaCyc databases. Nucl. Acids Res., 28:56–59, 2000.

    Google Scholar 

  • 23. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.-L. Barabási. The large-scale organization of metabolic networks. Nature, 407:651–654, 2000.

    Google Scholar 

  • 24. D.A. Fell and A. Wagner. The small world of metabolism. Nature Biotech., 189:1121–1122, 2000.

    Google Scholar 

  • 25. A. Wagner and D.A. Fell. The small world inside large metabolic networks. Proc. R. Soc. Lon. B, 268:1803–1810, 2001.

    Google Scholar 

  • 26. S. Milgram. The Small-World Problem. Psychology Today, 2:60–67, 1967.

    Google Scholar 

  • 27. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, 393:440–442, 1998.

    Google Scholar 

  • 28. E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, and A.-L. Barabaśi. Hierarchical organization of modularity in metabolic networks. Science, 297:1551–1555, 2002.

    Google Scholar 

  • 29. E. Ravasz and A.-L. Barabási. Hierarchical Organization in Complex Networks. Phys. Rev. E, 67:026122, 2002.

    Google Scholar 

  • 30. S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. Pseudofractal Scale-free Web. Phys. Rev. E, 65:066122, 2002.

    Google Scholar 

  • 31. S. Jung, S. Kim, and B. Kahng. A Geometric Fractal Growth Model for Scale Free Networks. Phys. Rev. E, 65:056101, 2002.

    Google Scholar 

  • 32. B. Bollobás. Random Graphs. Academic Press, London, 1985.

    Google Scholar 

  • 33. P. Erdös and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17–61, 1960.

    Google Scholar 

  • 34. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286:509–512, 1999.

    Google Scholar 

  • 35. A.-L. Barabási, R. Albert, and H. Jeong. Mean-field theory for scale-free random networks. Physica A, 272:173–187, 1999.

    Google Scholar 

  • 36. R. Albert, H. Jeong, and A.-L. Barabási. Attack and error tolerance of complex networks. Nature, 406:378, 2000.

    Google Scholar 

  • 37. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet to random breakdowns. Phys. Rev. Lett., 85(21):4626–4628, 2000.

    Google Scholar 

  • 38. R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Breakdown of the internet under intentional attack. Phys. Rev. Lett., 86(16):3682–3685, 2001.

    Google Scholar 

  • 39. S. H. Yook, Z.N. Oltvai, and A.-L. Barabaśi. Functional and topological characterization of protein interaction networks, 2004. Proteomics, in press.

    Google Scholar 

  • 40. R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86:3200–3203, 2001.

    Google Scholar 

  • 41. F. Liljeros, C.R. Edling, L.A.N. Amaral, and Y. Aberg. The web of human sexual contacts. Nature, 411:907–908, 2001.

    Google Scholar 

  • 42. L. H. Hartwell, J. J. Hopfield, S. Leibler, and A. W. Murray. From molecular to modular cell biology. Nature, 402:C47–C52, 1999.

    Google Scholar 

  • 43. Y.I. Wolf, G. Karev, and E.V. Koonin. Scale-free networks in biology: new insights into the fundamentals of evolution? Bioessays, 24:105–109, 2002.

    Google Scholar 

  • 44. D.A. Lauffenburger. Cell signaling pathways as control modules: Complexity for simplicity. Proc. Natl. Acad. Sci. USA, 97:5031–5033, 2000.

    Google Scholar 

  • 45. S.S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of E.coli. Nature Genet., 31:64 – 68, 2002.

    Google Scholar 

  • 46. A.-L. Barabási, E. Ravasz, and T. Vicsek. Deterministic scale-free networks. Physica A, 299:559–564, 2001.

    Google Scholar 

  • 47. A.W. Rives and T. Galitski. Modular organisation of cellular networks. Proc. Natl. Acad. Sci. U.S.A., 100:1128–1133, 2003.

    Google Scholar 

  • 48. V. Spirin and L. Mirny. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA, 100:12123–12128, 2003.

    Google Scholar 

  • 49. S.Y. Gerdes, M.D. Scholle, J.W. Campbell, G. Balázsi, E. Ravasz, M.D. Daugherty, A.L. Somera, N.C. Kyripides, I. Anderson, M.S. Gelfand, et al. Experimental determination and system level analysis of essential genes in Escherichia coli mg1655. J. Bact., 185(19):5673–5684, 2003.

    Google Scholar 

  • 50. P. Holme, M. Huss, and H. Jeong. Subnetwork hierarchies in biochemical pathways. Bioinformatics, 19(4):532–538, 2003.

    Google Scholar 

  • 51. M. Girvan and M.E.J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 99:7821–7826, 2002.

    Google Scholar 

  • 52. R. Milo, S.S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network motifs: Simple building locks of complex networks. Science, 298:824–827, 2002.

    Google Scholar 

  • 53. I. Xenarios, L. Salwinski, X.J. Duan, P. Higney, S.-M. Kim, and David Eisenberg. Dip, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucl. Acids Res., 30:303–305, 2002.

    Google Scholar 

  • 54. S. Wuchty, Z.N. Oltvai, and A.-L. Barabási. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nature Genetics, 35:176–179, 2003.

    Google Scholar 

  • 55. M. Remm, C.E.V. Storm, and E.L. Sonnhammer. Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. J. Mol. Biol., 314:1041–1052, 2001.

    Google Scholar 

  • 56. Z.N. Oltvai and A.-L. Barabási. Life’s Complexity Pyramid. Science, 298:763–764, 2002.

    Google Scholar 

  • 57. A.-L. Barabási and Z.N. Oltvai. Network biology: Understanding the cells’s functional organization. Nature Rev. Genetics, 5:101–113, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eli Ben-Naim Hans Frauenfelder Zoltan Toroczkai

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Barabási, AL., Oltvai, Z.N., Wuchty, S. Characteristics of Biological Networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds) Complex Networks. Lecture Notes in Physics, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44485-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44485-5_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22354-2

  • Online ISBN: 978-3-540-44485-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics