Skip to main content

Modeling partially premixed turbulent combustion

  • Conference paper
Numerical Flow Simulation II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NNFM,volume 75))

Summary

This paper investigates combustion in the partially premixed regime that may be observed in non-premixed systems. Direct numerical simulation (DNS) is first utilized to further investigate the properties of diffusion flames at quenching along with the development of edge flames. DNS of spray flames are also performed and reveal the crucial role played by partially premixed combustion when liquid fuel injection is used. The ultimate product of this work is a flamelet model for partially premixed turbulent combustion that combines the flamelet models for non-premixed and premixed combustion. In addition, a new model for the turbulent burning velocity in partially premixed flows is proposed. The model is used to simulate the stabilization process of turbulent methane/air and propane/air jet diffusion flames.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Peters. Turbulent combustion. Cambridge University Press, 2000.

    Google Scholar 

  2. V. Nayagam, R. Balasubramaniam, and P. D. Ronney. Diffusion flame holes. Combustion theory and modelling, 3 (4): 727–742, 1999.

    Article  MATH  Google Scholar 

  3. L. Vervisch and T. Poinsot. Direct numerical simulation of non-premixed turbulent flame. Annu. Rev. Fluid Mech., 30: 655–692, 1998.

    Article  MathSciNet  Google Scholar 

  4. A. Lilian. The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica, 1007 (1), 1974.

    Google Scholar 

  5. V. Favier and L. Vervisch. Effects of unsteadiness in edge-flames in liftoff in non-premixed turbulent combustion. In Twenty-Seventh Symposium (International) on Combustion,pages 1239–1245, Pittsburgh, PA, 1998. The Combustion Institute.

    Google Scholar 

  6. G. Ruetsch, L. Vervisch, and A. Linan. Effects of heat release on triple flames. Physics of Fluids, 7, 1995.

    Google Scholar 

  7. J. Buckmaster and R. Weber. Edge-flame holding. In Proceedings of the 26th Symposium (International) on Combustion,Pittsburgh, 1996. The Combustion Institute.

    Google Scholar 

  8. J. Réveillon and L. Vervisch. Accounting for spray vaporization in non-premixed turbulent combustion modeling: A single droplet model (SDM). Combustion and Flame, 121 (1): 75–90, 2000.

    Article  Google Scholar 

  9. J. Réveillon, K.N.C. Bray, and L. Vervisch. Dns study of spray vaporization and turbulent micro-mixing. In 36st Aerospace Sciences Meeting and Exhibit AIAA Paper 98–1028, Reno, NV, January 1998.

    Google Scholar 

  10. F. Mashayek. Direct numerical simulation of evaporating droplet dispersion in forced low mach number turbulence. Int. J. Heat Mass Transfer, 41 (17): 2601–2617, 1998.

    Article  MATH  Google Scholar 

  11. F. Mashayek. Simulations of reacting droplets dispersed in isotropic turbulence. AIAA Journal, 37 (11): 1420–1425, 1999.

    Article  Google Scholar 

  12. G. M. Faeth. Evaporation and combustion of sprays. Prog. Energy Combust. Sci., 9: 1–76, 1983.

    Article  Google Scholar 

  13. S. K. Lele. Compact finite difference schemes with spectral like resolution. J. Comput. Phys., 103: 1642, 1992.

    Article  MathSciNet  Google Scholar 

  14. A. A. Wray. Minimal storage time-advancement schemes for spectral methods. Technical report, Center for Turbulence Research, Stanford University, 1990.

    Google Scholar 

  15. K. Wohl, N. M. Kapp, and C. Gazley. The stability of open flames. In Third Symposium on Combustion, Flame and Explosion Phenomena, pages 3–21, 1949.

    Google Scholar 

  16. W. M. Pitts. Assessment of theories for the behaviour and blowout of lifted turbulent jet diffusion flames. In Twenty-Second Symposium (International) on Combustion,pages 809–816, Pittsburgh, PA, 1988. The Combustion Institute.

    Google Scholar 

  17. L. Vanquickenborne and A. Van Tiggelen. The stabilization mechanism of lifted diffusion flames. Combust. Flame, 10: 59–69, 1966.

    Article  Google Scholar 

  18. H. Eikhoff, B. Lenze, and W. Leukel. Experimental investigation on the stabilization mechanism of jet diffusion flames. In Twentieth Symposium (International) on Combustion,pages 311–318, Pittsburgh, PA, 1985. The Combustion Institute.

    Google Scholar 

  19. N. Peters and F. A. Williams. Lift-off characteristics of turbulent jet diffusion flames. AIAA Journal, 21: 423–429, 1983.

    Article  MATH  Google Scholar 

  20. J. E. Broadwell, W. J. A. Dahill, and M.G. Mungal. Blowout of turbulent diffusion flames. In Twentieth Symposium (International) on Combustion,page 303, Pittsburgh, PA, 1985. The Combustion Institute.

    Google Scholar 

  21. A. Liíiân. Ignition and flame spread in laminar mixing layers. In J. Buckmaster, T. L. Jackson, and A. Kumar, editors, Combustion in High-Speed Flows, pages 461–176. Kluwer Academic, Dordrecht, 1994.

    Chapter  Google Scholar 

  22. P. N. Kioni, B. Rogg, K. N. C. Bray, and A. Linan. Flame spread in laminar mixing layers: The triple flame. Combust. Flame, 95: 276–290, 1993.

    Article  Google Scholar 

  23. D. Veynante, L. Vervisch, T. Poinsot, A. Linan, and G. Ruetsch. Triple flame structure and diffusion flame stabilization. In Proceedings of the Summer Program 1994, pages 55–73. Center for Turbulence Research, 1994.

    Google Scholar 

  24. N. Peters. Laminar flamelet concepts in turbulent combustion. In Twenty-First Symposium (International) on Combustion,pages 1231–1250, Pittsburgh, PA, 1986. The Combustion Institute.

    Google Scholar 

  25. M. Wirth and N. Peters. Turbulent premixed combustion: A flamelet formulation and spectral analysis in theory an IC—engine experiments. In Twenty-Forth Symposium (International) on Combustion,pages 493–501, Pittsburgh, PA, 1992. The Combustion Institute.

    Google Scholar 

  26. C. M. Müller, H. Breitbach, and N. Peters. Partially premixed turbulent flame propagation in jet flames. In Twenty-Fifth Symposium (International) on Combustion,pages 1099–1106, Pittsburgh, PA, 1994. The Combustion Institute.

    Google Scholar 

  27. V. Favier, L. Vervisch, M. Herrmann, P. Terhoeven, B. Binninger, and N. Peters. Numerical simulation of combustion in partially premixed turbulent flows. In Ernst Heinrich Hirschel, editor, Numerical Flow Simulation, Notes on Numerical Fluid Mechanics, pages 203–221. Vieweg, 1998.

    Google Scholar 

  28. N. Peters. Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci., 10: 319–339, 1984.

    Article  Google Scholar 

  29. N. Peters. The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech., 384: 107–132, 1999.

    Article  MATH  Google Scholar 

  30. J. A. Sethian. Level Set Methods. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  31. T. Plessing, P. Terhoeven, and N. Peters. An experimental and numerical study on a laminar triple flame. Combust. Flame, 115: 335, 1998.

    Article  Google Scholar 

  32. Fluent Europe. FLUENT User’s Guide, Version 4.4,Jan. 1996.

    Google Scholar 

  33. M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. J. Comp. Phys., 114: 146–159, 1994.

    Article  MATH  Google Scholar 

  34. G. T. Kalghatgi. Lift-off height and visible lenghts of vertical turbulent jet diffusion flames in still air. Combust. Sci. and Tech., 41: 17, 1984.

    Article  Google Scholar 

  35. R. C. Miake-Lye and J. A. Hammer. Lifted turbulent jet flames: A stability criterion based on the jet large-scale structure. In Twenty-Second Symposium (International) on Combustion,pages 817–824, Pittsburgh, PA, 1992. The Combustion Institute.

    Google Scholar 

  36. S. Donnerhack and N. Peters. Stabilization heights in lifted methane-air jet diffusion flames diluted with nitrogen. Combust. Sci. and Tech., 41: 101–108, 1984.

    Article  Google Scholar 

  37. N. A. Rekke. A study of partially premixed unconfined propane flames. Combust. Flame, 97: 88–106, 1994.

    Article  Google Scholar 

  38. H. Barths, H. Pitsch, G. Paczko, and N. Peters. RIF User Guide. ITM, RWTH-Aachen, url: http://www.flamelets.com/RifUG.pdf 1998.

    Google Scholar 

  39. F. Mauss and N. Peters. Reduced kinetic mechanisms for premixed methane-air flames. In N. Peters and B. Rogg, editors, Reduced Kinetic Mechanisms for Applications in Combustion Systems, Lecture Notes in Physics, volume m 4, pages 58–75, Berlin, 1993. Springer Verlag.

    Google Scholar 

  40. H. Pitsch. FlameMaster, A C++ Program for OD and ID Flame Calculation. ITM, RWTH-Aachen, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herrmann, M. et al. (2001). Modeling partially premixed turbulent combustion. In: Hirschel, E.H. (eds) Numerical Flow Simulation II. Notes on Numerical Fluid Mechanics (NNFM), vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44567-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44567-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07485-1

  • Online ISBN: 978-3-540-44567-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics