Skip to main content

H-Adaptive Multiscale Schemes for the Compressible Navier-Stokes Equations — Polyhedral Discretization, Data Compression and Mesh Generation

  • Conference paper
  • First Online:
Flow Modulation and Fluid—Structure Interaction at Airplane Wings

Summary

In this paper we present the main conceptual ingredients and the current state of development of the new solver QUADFLOW for large scale simulations of compressible fluid flow and fluid—structure interaction. In order to keep the size of the discrete problems at every stage as small as possible for any given target accuracy, we employ a multiresolution adaptation strategy that will be described in the first part of the paper. In the second part we outline a new mesh generation concept that is to support the adaptive concepts as well as possible. A key idea is to understand meshes as parametric mappings determined by possibly few control points as opposed to store each mesh cell separately. Finally, we present a finite volume discretization along with suitable data structures which again is to support the adaptation concepts. We conclude with numerical examples of realistic applications demonstrating different features of the solver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Abgrall, Multiresolution analysis on unstructured meshes: Applications to CFD, in Experimentation, modeling and computation in flow, turbulence and combustion, eds. Chetverushkin and al., John Wiley & Sons, 1997

    Google Scholar 

  2. B. Bihari, A. Harten, Multiresolution schemes for the numerical solution of 2—D conservation laws I, SIAM J. Sci. Comput., 18, no. 2 (1997), 315–354

    MathSciNet  MATH  Google Scholar 

  3. J.M. Carnicer, W. Dahmen, J.M. Peña, Local decomposition of refinable spaces and wavelets, Appl. Comput. Harmon. Anal., 3 (1999), 127–153

    MathSciNet  MATH  Google Scholar 

  4. G. Chiavassa, R. Donat, Point value multiresolution for 2D compressible flows, SIAM J. Sci. Comput., 23, no. 3 (2001), 805–823

    MathSciNet  MATH  Google Scholar 

  5. B. Cockburn, F. Coquel, P. LeFloch, An error estimate for finite volume methods for multidimensional conservation laws, Math. Comp., 63 (1994), 77–103

    MathSciNet  MATH  Google Scholar 

  6. A. Cohen, N. Dyn, S.M. Kaber, M. Postel, Multiresolution finite volume schemes on triangles, J. Comp. Phys., 161 (2000), 264–286

    MATH  Google Scholar 

  7. A. Cohen, I. Daubechies, J. Feauveau, Bi—orthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math., 45 (1992), 485–560

    MathSciNet  MATH  Google Scholar 

  8. A. Cohen, S.M. Kaber, S. Miller, M. Postel, Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comp., posted on December 5, 2001, PII S 0025–5718(01)01391–6 (to appear in print)

    Google Scholar 

  9. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften, 2000

    MATH  Google Scholar 

  10. W. Dahmen, Some remarks on multiscale transformations, stability and biorthogonality, in Wavelets, Images and Surface Fitting, eds. P.J. Laurent, A. Le Méhauté, L.L. Schumaker, A.K. Peters, Wellesley, 157–188, 1994

    MATH  Google Scholar 

  11. W. Dahmen, B. Gottschlich—Müüller, S. Miller, Multiresolution schemes for conservation laws, Numer. Math., 88 (2001), 399–443

    MathSciNet  MATH  Google Scholar 

  12. W. Dahmen, A. Kunoth, K. Urban, Biorthogonal spline-wavelets on the interval — stability and moment conditions, Appl. Comput. Harmon. Anal., 6 (1999), 132–196

    MathSciNet  MATH  Google Scholar 

  13. B. Gottschlich—Müüller, Multiscale Schemes for Conservation Laws, PhD thesis, RWTH Aachen, Shaker—Verlag, 1998

    Google Scholar 

  14. Gottschlich—Müüller, B., Miller, S., Application of Multiscale Techniques to Hyperbolic Conservation Laws, in: Computational Mathematics, Lecture Notes in Pure & Applied Mathematics, 202, eds. Z. Chen, Y. Li, Ch. A. Micchelli, Y. Xu, Harry—Dekker—Verlag, New York, 1998, 113–138

    Google Scholar 

  15. Gottschlich—Müüller, B., Müller, S., Adaptive Finite Volume Schemes for Conservation Laws based on Local Multiresolution Techniques, in: Hyperbolic Problems: Theory, Numerics, Applications, eds. M. Fey and R. Jeltsch, Birkhäuser, 1999, 385–394

    Google Scholar 

  16. Harten, A., Adaptive multiresolution schemes for shock computations, J. Comp. Phys., 115 (1994), 319–338

    MathSciNet  MATH  Google Scholar 

  17. Harten, A., Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math. 12, vol. 48 (1995), 1305–1342

    MathSciNet  MATH  Google Scholar 

  18. P. Houston, J.A. Mackenzie, E. Süüli, G. Warnecke, A posteriori error analysis for numerical approximations of Friedrichs systems, Numer. Math., 82 (1999), 433–470

    MathSciNet  MATH  Google Scholar 

  19. D. Kröner, S. Noelle, M. Rokyta, Convergence of higher-order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions, Numer. Math., 71 (1995), 527–560

    MathSciNet  MATH  Google Scholar 

  20. D. Kröner, M. Ohlberger, A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions, Math. Comp., 69 (1999), 25–39

    MATH  Google Scholar 

  21. S.N. Kruzhkov, First order quasilinear equations with several space variables, Math. USSR Sb., 10 (1970), 217–243 (In Russian)

    MATH  Google Scholar 

  22. N.N. Kuznetsov, The weak solution of the Cauchy problem for a multi–dimensional quasilinear equation, Mat. Zametki, 2 (1967), 401–410 (In Russian)

    MathSciNet  MATH  Google Scholar 

  23. Müller, S., Erweiterung von ENO–Verfahren auf zwei Raumdimensionen und Anwendung auf hypersonische Stauspunktprobleme, PhD thesis, RWTH Aachen, Shaker– Verlag, 1993

    MATH  Google Scholar 

  24. Müller, S., Adaptive Multiscale Schemes for Conservation Laws, Habilitation thesis, RWTH Aachen, 2001

    Google Scholar 

  25. S. Müller, A. Voss, A Manual for the Template Class Library igpm_t_lib, IGPM– Report 197, RWTH Aachen, 2000

    Google Scholar 

  26. F. Schröder–Pander, T. Sonar, O. Friedrich, Generalized multiresolution analysis on unstructured grids, Numer. Math., 86 (2000), 685–715

    MathSciNet  MATH  Google Scholar 

  27. T. Sonar, V. Hannemann, D. Hempel, Dynamic adaptivity and residual control in unsteady compressible flow computation, Math. and Comp. Modelling, 20 (1994), 201213

    MathSciNet  MATH  Google Scholar 

  28. T. Sonar, E. Süli, A dual graph–norm refinement indicator for finite volume approximations of the Euler equations, Num. Math., 78 (1998), 619–658

    MathSciNet  MATH  Google Scholar 

  29. Grid Generation, Finite Elements and Geometric Design, eds. B. Hamann, RE Sarraga, special issue, CAGD 12 (1995)

    MATH  Google Scholar 

  30. K.H. Brakhage, High Quality Mesh Generation and Sparse Representation Using BSplines, in Proceedings of the 7th International Conference on Numerical Grid Generation in Computational Field Simulations, eds. B.K. Soni, J. Häuser, J.F. Thompson, P. Eiseman, 753–762, Chateau Whistler Resort, British Columbia, 2000

    Google Scholar 

  31. K.H. Brakhage, S. Müller, Algebraic-Hyperbolic Grid Generation with Precise Control of Intersection of Angles, Int. J. Numer. Math. Fluids 33(2000), 89–123

    MathSciNet  MATH  Google Scholar 

  32. K.H. Brakhage, Ein menügesteuertes intelligentes System zur zwei- und dreidimensionalen Computergeometrie, VDI Verlag, series 20: Rechnergestütze Verfahren, no. 26, 1990

    Google Scholar 

  33. K.H. Brakhage, CAG — Computer Aided Geometry, user manual (in German), Institut für Geometrie und Praktische Mathematik, 1986–1999

    Google Scholar 

  34. C. de Boor, A practical Guide to Splines, Springer-Verlag, New York, 1978

    MATH  Google Scholar 

  35. S.A. Coons, Surface Patches and B-Spline Curves, in Computer Aided Geometric Design, eds. R.E. Barnhill, RE Riesenfeld, Academic Press, 1974

    Google Scholar 

  36. M. Eck, J. Hadenfeld, Local Energy Fairing of B-Spline Curves, Computing Supplementum 10, Geometric Modelling, 129–147, Springer, 1995

    MATH  Google Scholar 

  37. M. Eck, J. Hadenfeld, Knot Removal for B-Spline Curves, CAGD 12(1995), 259–282

    MathSciNet  MATH  Google Scholar 

  38. G. Farin, Curves and Surfaces for Computer Aided Geometric Design, 2nd edition, Academic Press, 1990

    MATH  Google Scholar 

  39. G. Farin, Commutativity of Coons and Tensor Product Operations, Rocky Mountain Journal of Mathematics 22(1992), 541–546

    MathSciNet  MATH  Google Scholar 

  40. G. Farin, G. Rein, N.S. Sapidis, A.J. Worsey, Fairing cubic B-Spline curves, CAGD 4(1987), 91–103

    MathSciNet  MATH  Google Scholar 

  41. W.J. Gordon, C.A. Hall, Construction of Curvilinear Coordinate Systems and Applications to Grid Generation, International Journal for Numerical Methods in Engineering, 7(1973), 461–477

    MathSciNet  MATH  Google Scholar 

  42. C.A. Hall, W.W. Meyer, Optimal Error Bounds for Cubic Spline Interpolation, Journal of Approximation Theory 16(1976), 105–122

    MathSciNet  MATH  Google Scholar 

  43. J. Hoschek, D. Lasser, Grundlagen der geometrischen Datenverarbeitung, 2nd edition, B.G. Teubner, Stuttgart, 1992

    MATH  Google Scholar 

  44. P. Knupp, S. Steinberg, Fundamentals of Grid Generation, CRC Press (1994)

    MATH  Google Scholar 

  45. J.A. Sethian, Curvature Flow and Entropy Condition Applied to Grid Generation, J. Comp. Phys. 115(1994), 440–454

    MathSciNet  MATH  Google Scholar 

  46. S.P. Spekreijse, Elliptic Grid Generation Based on Laplace Equations and Algebraic Transformations, J. Comp. Phys. 118(1995), 38–61

    MATH  Google Scholar 

  47. S.P. Spekreijse, J.W. Boerstoel, Multiblock Grid Generation. Part 1: Elliptic Grid Generation Methods for Structured Grids, in Computational Fluid Dynamics, VKI Lecture Series 1996–06, ed. H. Deconinck, von Karman Institut for Fluid Dynamics, 1–48, 1996

    Google Scholar 

  48. S.P. Spekreijse, J.W. Boerstoel. Multiblock Grid Generation. Part 2: Multiblock Aspects, in Computational Fluid Dynamics, VKI Lecture Series 1996–06, ed. H. Deconinck, von Karman Institut for Fluid Dynamics, 1–39, 1996

    Google Scholar 

  49. P. Batten, M.A. Leschziner, U.C. Goldberg, Average-State Jacobians and Implicit Methods for Compressible Viscous and Turbulent Flows, J. Comp. Phys., 137, 1997, 38–78

    MathSciNet  MATH  Google Scholar 

  50. P.L. Roe, Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes, J. Comp. Phys, 43, 1981, 357–372

    MathSciNet  MATH  Google Scholar 

  51. V. Venkatakrishnan, Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters, J. Comp. Phys., 118, 1995, 120–130

    MATH  Google Scholar 

  52. W.J. Coirer, An Adaptively Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations, Ph.D. Thesis, University of Michigan, 1994

    Google Scholar 

  53. M. Delanaye, M.J. Aftosmis, M.J. Berger, Y. Liu, T.H. Pulliam, Automatic Hybrid— Cartesian Grid Generatin for High—Reynolds Number Flows around Complex Geometries, AIAA Paper 99–0777, 1999

    Google Scholar 

  54. D.G. Holmes, S.D. Connell, Solution of the 2D Navier-Stokes Equations on Unstructured Adaptive Grids, AIAA Paper 89–1932, 1989

    Google Scholar 

  55. W.K. Anderson, D.L. Bonhaus, An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids, Computers & Fluids, vol 23, no 1, 1994, 1–21

    MATH  Google Scholar 

  56. P. Geuzaine, An Implicit Upwind Finite Volume Method for Compressible Turbulent Flows on Unstructured Meshes, PhD Thesis, Universitè de Liège, 1999

    Google Scholar 

  57. C.H. Hirsch, Numerical Computation of Internal and External Flows: Computational Methods for Inviscid and Viscous Flows, volume 2, Wiley, 1988

    MATH  Google Scholar 

  58. J.L. Thomas, M.D. Salas, Far-Field Boundary Conditions for Transonic Lifting Solutions to the Euler Equations, AIAA J., 24, 1986, 1074–1080

    Google Scholar 

  59. Y. Saad, Iterative Methods for Sparse Linear Systems, PWS, Boston, 1996

    MATH  Google Scholar 

  60. I. Grotowsky, J. Ballmann, Efficient Time Integration of Navier-Stokes Equations, Cornputers & Fluids, vol 28, no 2, 1999, 243–263

    MathSciNet  MATH  Google Scholar 

  61. K.J. Vanden, PD. Orkwis, Comparison of Numerical and Analytical Jacobians, AIAA Journal, vol 34, no 6, 1996

    MATH  Google Scholar 

  62. S. Balay, W. Gropp, L.C. McInnes, B.E Smith, PETSc 2.0 Users Manual, Tech. Rep. ANL-95/11 — Revision 2.0.28, Argonne National Laboratory, 2000, http://www-fp.mcs.anl.gov/petsc/

    Google Scholar 

  63. F. Bramkamp, J. Ballmann, S. Müller, Development of a Flow Solver Employing Local Adaptation Based on Multiscale Analysis on B-Spline Grids, in: Proceedings of 8th Annual Conf. of the CFD Society of Canada, 2000, 113–118

    Google Scholar 

  64. E Bramkamp, J. Ballmann, Solution of the Euler Equations on Locally Adaptive BSpline Grids, Notes on Numerical Fluid Mechanics, Vol. 77, 2002, pp. 281–288

    MATH  Google Scholar 

  65. F. Ringleb, Exakte Lösung der Differentialgleichung einer adiabatischen Gasströmung, ZAMM, 20(4), 1940, 185–198

    MathSciNet  MATH  Google Scholar 

  66. L.G. Loitsianski, Laminare Grenzschichten, Akademie Verlag, Berlin, 1967

    MATH  Google Scholar 

  67. K. Becker, N. Kroll, C.C. Rossow, E Thiele, Numerical Flow Calculations for Complete Aircraft — the Megaflow Project, DGLR-JT98–225, DGLR Jahrbuch 1998, 355–364

    Google Scholar 

  68. Test Cases for Inviscid Flow Field Methods, AGARD Advisory Report No. 211, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bramkamp, F. et al. (2003). H-Adaptive Multiscale Schemes for the Compressible Navier-Stokes Equations — Polyhedral Discretization, Data Compression and Mesh Generation. In: Ballmann, J. (eds) Flow Modulation and Fluid—Structure Interaction at Airplane Wings. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 84. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44866-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44866-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53613-7

  • Online ISBN: 978-3-540-44866-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics