Skip to main content

Abstract

Tissue engineering of bone, articular cartilage, etc., in the orthopaedic field has been one of the main focuses of research ever since the discipline of tissue engineering emerged nearly 20 years ago, and yet great efforts are still needed to develop clinically usable tissue-engineered bone or cartilage for the general public. In this chapter, with our own experience in research on bone tissue engineering, candidate materials, scaffold fabrication technologies and strategies for developing bone tissue engineering scaffolds are reviewed and some important influencing factors are analyzed. Polymer-based biodegradable composite scaffolds appear to have great potential in bone tissue engineering. The successful scaffold fabrication technologies will be those that can produce good-quality scaffolds which are also of consistent quality. The capability of the technology to produce scaffolds in relatively large quantities at a reasonable cost is another important consideration. The selection of scaffold material(s) and scaffold production technology must be considered together when one embarks on developing tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnst C, Carey J (1998) “Biotech bodies”. Business Week, Issue 3588 (07/27/98), pp 56–63

    Google Scholar 

  • Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Metal Foams: a design guide, Butterworth-Heinemann, Boston

    Google Scholar 

  • Atala A, Lanza RP (eds) (2002) Methods of tissue engineering, Academic Press, San Diego

    Google Scholar 

  • Astala R, Stott MJ (2005) First principles investigation of mineral component of bone: CO3 substitutions in hydroxyapatite. Chem Mater 17:4125–4133

    Article  CAS  Google Scholar 

  • Bagot D’Arc M, Daculsi G (2003) Micro macroporous biphasic ceramics and fibrin sealant as a moldable material for bone reconstruction in chronic otitis media surgery. A 15-year experience. J Mater Sci Mater Med 14:229–233

    Article  PubMed  CAS  Google Scholar 

  • Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J (1981) Hydroxyapatite reinforced polyethylene: a mechanically compatible implant material for bone replacement. Biomaterials 2:185–186

    Article  PubMed  CAS  Google Scholar 

  • Branemark R, Branemark P-I, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehab Res Develop 38:175–181

    CAS  Google Scholar 

  • Callcut S, Knowles JC (2002) Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam. J Mater Sci Mater Med 13:485–489

    Article  PubMed  CAS  Google Scholar 

  • Chen Y (2006) Developing bioactive composite scaffolds for bone tissue engineering. PhD Thesis, Hong Kong Polytechnic University, Hong Kong

    Google Scholar 

  • Chen Y, Mak AFT, Li J, Wang M, Shum AWT (2005a) Formation of apatite on poly(α-hydroxy acid) in an accelerated biomimetic process. J Biomed Mater Res Appl Biomater 73B:68–76

    Article  CAS  Google Scholar 

  • Chen Y, Mak AFT, Wang M (2005b) Formation of apatite/collagen composite coating on poly(L-lactic acid) scaffolds in an accelerated biomimetic process. Trans Soc Biomater 30th Annual Meeting, Memphis, Tennessee, p 442

    Google Scholar 

  • Chen Y, Mak AFT, Wang M, Li J (2006a) Composite coating of bone-like apatite particles and collagen fibers on poly (L-lactic acid) formed through an accelerated biomimetic coprecipitation process. J Biomed Mater Res B 77B:315–322

    Article  CAS  Google Scholar 

  • Chen Y, Mak AFT, Wang M, Li J, Wong MS (2006b) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surface Coatings Technol 201:575–580

    Article  CAS  Google Scholar 

  • Chua CK, Leong KF, Lim CS (2003) Rapid prototyping: principles and applications, 2nd edn. World Scientific, Singapore

    Google Scholar 

  • Cooper KG (2001) Rapid prototyping technology: selection and application. Dekker, New York

    Google Scholar 

  • Cowan JA (ed) (1995) The biological chemistry of magnesium. VCH, New York

    Google Scholar 

  • Degischer H-P, Kriszt B (eds) (2002) Handbook of cellular metals: production, processing, applications, Wiley-VCH, Weinheim

    Google Scholar 

  • Devin JE, Attawia MA, Laurencin CT (1996) Three dimensional degradable porous polymerceramic matrices for use in bone repair. J Biomater Sci Polymer Ed 7:661–669

    CAS  Google Scholar 

  • Du C, Cui FZ, Zhu XD, de Groot K (1999) Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 44:407–415

    Article  PubMed  CAS  Google Scholar 

  • Fabbri M, Celotti GC, Ravaglioli A (1995) Hydroxyapatite-based porous aggregates: physicochemical nature, structure, texture and architecture. Biomaterials 16:225–228

    Article  PubMed  CAS  Google Scholar 

  • Fong H, Reneker DH (2000) Electrospinning and the formation of nanofibers. In: Salem DR (ed) Structure formation in polymeric fibers. Hanser Publishers, Munich, pp 225–246

    Google Scholar 

  • Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T (2004) Osteoinduction of porous bioactive titanium metal. Biomaterials 25:443–450

    Article  PubMed  CAS  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Griffith L, Naughton G (2002) Tissue engineering: current challenges and expanding opportunities. Science 295:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Helsen JA, Breme HJ (eds) (1998) Metals as biomaterials. Wiley, Chichester

    Google Scholar 

  • Hench LL (2001) The story of Bioglass®: from concept to clinic. In: Pashley DW (ed) Imperial college inaugural lectures in materials science and materials engineering. Imperial College Press, London, pp 203–229

    Google Scholar 

  • Heywood HK, Sembi PK, Lee DA, Bader DL (2004) Cellular utilization determines viability and matrix distribution profiles in chondrocyte-seeded alginate constructs. Tissue Eng 10:1467–1479

    PubMed  CAS  Google Scholar 

  • Hing KA, Best SM, Tanner KE, Bonfield W, Revell PA (1999) Quantification of bone in growth within bone-derived porous hydroxyapatite implants of varying density. J Mater Sci Mater Med 10:663–670

    Article  PubMed  CAS  Google Scholar 

  • Hollander AP, Hatton PV (eds) (2004) Biopolymer methods in tissue engineering. Humana Press, Totowa

    Google Scholar 

  • Hollister SJ, Maddox RD, Taboas JM (2002) Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 23:4095–4103

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher DW (2000) Polymeric scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  PubMed  CAS  Google Scholar 

  • Huygh A, Schepers EJG, Barbier L, Ducheyne P (2002) Microchemical transformation of bioactive glass particles of narrow size range, a 0–24 month study. J Mater Sci Mater Med 13:315–320

    Article  PubMed  CAS  Google Scholar 

  • Iannace S, Maffezzoli A, Leo G, Nicolais L (2001) Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions. Polymer 42:3799–3807

    Article  CAS  Google Scholar 

  • Jiang G, Shi D (1998) Coating hydroxyapatite on highly porous Al2O3 substrate for bone substitutes. J Biomed Mater Res (Appl Biomater) 43:77–81

    Article  CAS  Google Scholar 

  • Jiang G, Shi D (1999) Coating hydroxyapatite on porous alumina substrate through a thermal decomposition method. J Biomed Mater Res (Appl Biomater) 48:117–120

    Article  CAS  Google Scholar 

  • Kim SR, Lee JH, Kim YT, Riu DH, Jung SJ, Lee YJ, Chung SC, Kim YH (2003) Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviour. Biomaterials 24:1389–1398

    Article  PubMed  Google Scholar 

  • Kohn J, Abramson S, Langer R (2004) Bioresorbable and bioerodible materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, San Diego, pp 115–127

    Google Scholar 

  • Kokubo T, Kim HM, Kawashita M, Nakamura T (2004) Bioactive metals: preparation and properties. J Mater Sci Mater Med 15:99–107

    Article  PubMed  CAS  Google Scholar 

  • Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng 20:49–56

    Article  Google Scholar 

  • Langer R, Vacanti JR (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  • Lanza RP, Langer R, Vacanti J (eds) (2000) Principles of tissue engineering, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Lee SH, Zhou WY, Cheung WL, Wang M (2005) Producing polymeric scaffolds for bone tissue engineering using the selective laser sintering technique. Trans Soc Biomater 30th Annual Meeting, Memphis, Tennessee, p 348

    Google Scholar 

  • LeGeros RZ, LeGeros JP (1993) Dense hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 139–180

    Google Scholar 

  • Leong KW, Brott BC, Langer R (1985) Bioerodible polyanhydrides as drug carrier matrices I: characterization, degradation and release characteristics. J Biomed Mater Res 19:941–955

    Article  PubMed  CAS  Google Scholar 

  • Li J (2004) Polymer hydrogels. In: Teoh SH (ed) Engineering materials for biomedical applications. World Scientific, Singapore, pp 7-1 to 7-18

    Google Scholar 

  • Li JP, Li SH, Van Bltterswijk CA, de Groot K (2005) A novel porous Ti6Al4V: characterisation and cell attachment. J Biomed Mater Res 73A:223–233

    Article  CAS  Google Scholar 

  • Li L, Gao J, Wang Y (2004) Evaluation of cytotoxicity and corrosion behaviour of alkali-heat-treated magnesium in simulated body fluid. Surface Coatings Technol 185:92–98

    Article  CAS  Google Scholar 

  • Li S (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res (Appl Biomater) 48:342–353

    Article  CAS  Google Scholar 

  • Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613–621

    Article  PubMed  CAS  Google Scholar 

  • Lindsay DT (1996) Functional human anatomy. Mosby, St. Louis

    Google Scholar 

  • Lloyd-Evans M (2004) Regulating tissue engineering. Materials Today 7:48–55

    Article  CAS  Google Scholar 

  • Lysaght MJ, Hazlehurst AL (2004) Tissue engineering: the end of the beginning. Tissue Eng 10:309–320

    Article  PubMed  Google Scholar 

  • McIntire LV (ed) (2003) WTEC panel on tissue engineering research: final report. Academic Press, San Diego

    Google Scholar 

  • Mooney DJ, Mikos AG (1999) Growing new organs. Sci Am 280:38–43

    Article  Google Scholar 

  • Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11:130–140

    Article  PubMed  CAS  Google Scholar 

  • Nerem RM (1992) Tissue engineering in the USA. Med Biol Engin Comput 30:CE8–CE12

    Article  CAS  Google Scholar 

  • Patrick CW Jr, Mikos AG, McIntire LV (eds) (1998) Frontiers in tissue engineering. Pergamon, Oxford

    Google Scholar 

  • Peppas NA (2004) Hydrogels. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, San Diego, pp 100–107

    Google Scholar 

  • Pereira MM, Jones JR, Hench LL (2005) Bioactive glass and hybrid scaffolds prepared by solgel method for bone tissue engineering. Adv Appl Ceram 104:35–42

    Article  CAS  Google Scholar 

  • Peter SJ, Miller ST, Zhu G, Yasko AW, Mikos AG (1998) In vivo degradation of a poly(propylene fumarate)/β-tricalcium phosphate injectable composite scaffold. J Biomed Mater Res 41:1–7

    Article  PubMed  CAS  Google Scholar 

  • Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. Dekker, New York

    Google Scholar 

  • Rice RW (2002) Ceramic fabrication technology. Dekker, New York

    Google Scholar 

  • Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications, Biomaterials 23:3871–3878

    Article  PubMed  CAS  Google Scholar 

  • Shah R, Sinanan ACM, Knowles JC, Hunt NP, Lewis MP (2005) Craniofacial muscle engineering using a 3-dimensional phosphate glass fiber construct. Biomaterials 26:1497–1505

    Article  PubMed  CAS  Google Scholar 

  • Shi D, Jiang G (1998) Synthesis of hydroxyapatite films on porous Al2O3 substrate for hard tissue prosthetics. Mater Sci Engin C 6:175–182

    Article  Google Scholar 

  • Shi D, Jiang G, Wen X (2000) In vitro bioactive behavior of hydroxyapatite-coated porous Al2O3. J Biomed Mater Res (Appl Biomater) 53:457–466

    Article  CAS  Google Scholar 

  • Skalak R, Fox CF (eds) (1988) Tissue engineering. Liss, New York

    Google Scholar 

  • Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv Engin Mater 7:563–586

    Article  CAS  Google Scholar 

  • Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly(N-isopropylacrylamide)-based hydrogels that support tissue formation. Macromolecules 32:7370–7379

    Article  CAS  Google Scholar 

  • Sultana N Wang M (2007), Fabrication and characterisation of polymer and composite scaffolds based on polyhydroxybutyrate and polyhydroxybutyrate-co-hydroxyvalerate, Key Engineering Materials, 334–335:1229–1232

    Google Scholar 

  • Tong HW Wang M (2006), Electrospinning of PHBV fibers: the processing window and elimination of defects, Proceedings of the Biomedical Engineering Conference BME2006, Hong Kong, 2006, pp 55–58

    Google Scholar 

  • Wang CX, Wang M (2000) Fabrication and characterisation of porous tricalcium phosphate. Proc 10th Int Conf on Biomedical Engineering, Singapore, pp 547–548

    Google Scholar 

  • Wang M (2002) Bioceramics. In: Ikada Y (ed) Recent research developments in biomaterials. Research Signpost, Trivandrum, pp 33–76

    Google Scholar 

  • Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Ni J (2004) In vitro evaluation of bioactive and biodegradable composites based on polyhydroxybutyrate. Ann Chimie 29:17–28

    Article  Google Scholar 

  • Wang M, Yong HS (2001) Production and evaluation of a glass reinforced hydroxyapatite composite. Proc 5th Asian Symp on Biomedical Materials, Hong Kong, pp 101–102

    Google Scholar 

  • Wang M, Chen LJ, Ni J, Weng J, Yue CY (2001) Manufacture and evaluation of bioactive and biodegradable materials and scaffolds for tissue engineering. J Mater Sci Mater Med 12:855–860

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Shum DKY, Chu CS, Lam KO (2006) Fabrication and evaluation of chitosan devices for peripheral nerve regeneration: an initial study. Proc Biomedical Engineering Conference BME2006, Hong Kong, pp 47–50

    Google Scholar 

  • Wen CE, Yamada Y, Shimojima K, Mabuchi M, Nakamura M, Asahina T (2000) Mechanical properties of cellular magnesium materials. Mater Sci Forum 350:359–364

    Google Scholar 

  • Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and Mg. Scripta Materialia 45:1147–1153

    Article  CAS  Google Scholar 

  • Weng J, Wang M (2001a) Producing chitin scaffolds with controlled pore size and interconnectivity for tissue engineering. J Mater Sci Let 20:1401–1403

    Article  CAS  Google Scholar 

  • Weng J, Wang M (2001b) In vitro formation of bone-like apatite on the surface of solution-cast partially crystalline hydroxyapatite/chitin composite. Key Eng Mater 192–195:657–660

    Google Scholar 

  • Weng J, Wang M, Chen J (2002) Plasma sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds. Biomaterials 23:2623–2629

    Article  PubMed  CAS  Google Scholar 

  • Williams D (2004) Benefit and risk in tissue engineering. Materials Today 7:24–29

    Article  CAS  Google Scholar 

  • Wu JM, Wang M (in press) Surface modification of titanium and its alloys for orthopaedic and dental applications. In: Tanaka J (ed) Surface design and modification of biomaterials for clinical application. Research Signpost, Trivandrum

    Google Scholar 

  • Wu JM, Wang M, Hayakawa S, Tsuru K, Osaka A (2006a) In vitro bioactivity of hydrogen peroxide modified titanium: effects of surface morphology and film thickness. Key Engin Mater 309–311:407–410

    Article  Google Scholar 

  • Wu JM, Wang M, Li YW, Zhao FD, Ding XJ, Osaka A (2006b) Crystallization of amorphous titania gel by hot water aging and induction of in vitro apatite formation by crystallized titania. Surface Coatings Technol 201:755–761

    Article  CAS  Google Scholar 

  • Wu JM, Wang M, Osaka A (in press) Bioactive composite coating on titanium implants for hard tissue repair. Key Engin Mater

    Google Scholar 

  • Wu JM, Zhang S, Zhao FD, Li YW, Wang M, Osaka A (2006c) Influence of film thickness on in vitro bioactivity of thin anatase films produced through direct deposition from an aqueous titanium tetrafluoride solution, Surface and Coatings Technology 201:3181–3187

    Article  CAS  Google Scholar 

  • Yang HY, Wang M (1999) Investigation into manufacture of porous hydroxyapatite via three different routes and effects of porosifiers. Bioceramics 12:349–352

    CAS  Google Scholar 

  • Yang F, Murugan R, Wang S, Ramakrishna S (2005) Electrospinning of nanomicro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26:2603–2610

    Article  PubMed  CAS  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2002) The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8:1–11

    Article  PubMed  CAS  Google Scholar 

  • Yang XB, Bhatnagar RS, Li S, Oreffo ROC (2004) Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 10:1148–1159

    PubMed  CAS  Google Scholar 

  • Yannas IV (2004) Natural materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, San Diego, pp 127–137

    Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fuse deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Ma PX (1999) Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446–455

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhang M (2001) Synthesis and characterization of macroporous chitosan/calcium phosphate composite scaffolds for tissue engineering. J Biomed Mater Res 55:304–312

    Article  PubMed  CAS  Google Scholar 

  • Zhou WY, Wang M, Cheung WL (2005) Synthesis of nanospheres of carbonated hydroxyapatite by nanoprecipitation, Proceedings of the 3rd International Symposium on Apatite and Correlative Biomaterials, Wuhan, China, p 107

    Google Scholar 

  • Zhou WY, Lee SH, Cheung WL, Wang M Ip WY (2006), Selective laser sintering of porous scaffolds from poly(L-lactide) microspheres and its nanocomposite with carbonated hydroxyapatite nanospheres, Proceedings of the 20th European Conference on Biomaterials (ESB2006), Nantes, France, p 175

    Google Scholar 

  • Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62:175–184

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, M. (2007). Materials Selection and Scaffold Fabrication for Tissue Engineering in Orthopaedics. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics