Skip to main content

Regulation of the Cytoskeleton Assembly: a Role for a Ternary Complex of Actin with Two Actin-Binding Proteins

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 32))

Abstract

The actin cytoskeleton is an essential component of all eukaryotic cells. Besides its role in cell motility, it has a number of other functions, including cytokinesis, signal transduction, and the maintenance of cell shape. An essential property of the cytoskeleton is its ability to rapidly assemble and disassemble monomers of actin into F-actin filaments and this process is now known to be regulated by a number of actin-binding proteins (ABPs) of which cofilin appears to be the most widely distributed in nature. In this chapter we pose the question: does cofilin act alone in controlling actin filament assembly or is the binding of cofilin to actin modulated by other ABPs?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arber SFA, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by lim-kinase. Nature 393: 805–809

    Article  PubMed  CAS  Google Scholar 

  • Ballweber E, Hannappel E, Huff T, Mannherz HG (1997) Mapping the binding site of thymosin 134 on actin by competition with G-actin binding proteins indicates negative cooperativity between binding sites located on opposite subdomains of actin. Biochem J 327: 787–793

    PubMed  CAS  Google Scholar 

  • Barden JA, dos Remedios CG (1984) The environment of the high affinity cation binding site on actin and the separation between cation and ATPase sites as revealed by proton NMR and fluorescence spectroscopy. J Biochem 96: 913–921

    PubMed  CAS  Google Scholar 

  • Barden JA, Grant NJ, dos Remedios CG (1982) Identification of the nucleus of actin polymerisation. Biochem Int 5: 685–692

    CAS  Google Scholar 

  • Becker PS, Schwartz MA, Morrow JS, Lux SE (1990) Radiolable-transfer cross-linking demonstrates that protein 4.1 binds to the N-terminal region of beta-spectrin and to actin in binary interactions. Eur J Biochem 193: 827–836

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A, Weber K (1980) Vilin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium-dependent manner. Cell 20: 839–847

    Article  PubMed  CAS  Google Scholar 

  • Carlsson L, Nyström L-E, Sundkvist I, Markey F, Lindberg U (1977) Actin polymerizability is influ-enced by profilin, a low molecular weight protein in non-muscle cells. J Mol Biol 115: 465–483

    Article  PubMed  CAS  Google Scholar 

  • Carter LK, Christopherson RI, dos Remedios CG (1997) Analysis of the binding of deoxyri-bonuclease Ito G-actin by capillary electrophoresis. Electrophoresis 18: 1054–1058

    Article  PubMed  CAS  Google Scholar 

  • Cohen CM, Foley SF (1984) Biochemical characterization of complex formation by human erythrocyte spectrin, protein 4.1, and actin. Biochemistry 23: 6091–6098

    Article  PubMed  CAS  Google Scholar 

  • Coumans J, dos Remedios CG (1998) Actin-binding proteins in mouse C2 myoblasts and myotubes–a combination of affinity chromatography and two-dimensional gel electrophoresis. Electrophoresis 19: 826–833

    Article  PubMed  CAS  Google Scholar 

  • Discher DE, Winardi R, Schischmanoff PO, Parra M, Conboy JG, Mohandas N (1995) Mechanochemistry of protein 4.1’s spectrin-actin-binding domain: ternary complex interactions, membrane binding, network integration, structural strengthening. J Cell Biol 130: 897–907

    Article  PubMed  CAS  Google Scholar 

  • dos Remedios CG, Kiessling PC, Hambly BD (1994) DNase I binding induces a conformational changes in the actin monomer. In: Synchrotron radiation in the biosciences. Oxford Science Publications, Oxford, 418–425 pp

    Google Scholar 

  • Daoud EW, Hayden SM, Bamberg JR (1988) Inhibition of deoxyribonuclease I activity by actin covalently cross-linked to chick brain actin depolymerizing factor through exposed sulfhydryls. Biochem Biophys Res Commun 155: 890–894

    Article  PubMed  CAS  Google Scholar 

  • Drummond DR, Hennessey ES, Sparrow JC (1992) The binding of mutant actins to profilin, ATP and DNase I. Eur J Biochem 209: 171–179

    Google Scholar 

  • Edgar AJ (1989) Gel electrophoresis of native actin and the actin-deoxyribonuclease I complex. Electrophoresis 10: 722–725

    Article  PubMed  CAS  Google Scholar 

  • Gardner K, Bennett V (1987) Modulation of spectrin-actin assembly by erythrocyte adducin. Nature 328: 359–362

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock SE, Carlsson L, Lindberg U (1976) Depolymerization of F-actin by deoxyribonuclease I. Cell 7: 531–542

    Article  PubMed  CAS  Google Scholar 

  • Isenberg G (1995) Cytoskeletal proteins. A purification manual. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin-DNase I complex. Nature 347: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Kekic M, dos Remedios CG (1999) Electrophoretic monitoring of pollutants: effect of cations and organic compounds on proteins interaction monitored by native gel electrophoresis. Electrophoresis 20: 2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388: 78–82

    Article  PubMed  CAS  Google Scholar 

  • Lazarides E, Lindberg U (1974) Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci USA 71: 4724–4746

    Google Scholar 

  • Lehrer SS, Kerwar G (1972) Intrinsic fluorescence of actin. Biochemistry 11: 1211–1217

    Article  PubMed  CAS  Google Scholar 

  • MacLean-Fletcher S, Pollard TD (1980) Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun 96: 18–27

    Article  PubMed  CAS  Google Scholar 

  • Maekawa S, Nishida E, Ohta, Sakai H (1984) Isolation of low molecular weight actin-binding proteins from porcine brain. J Biochem 95: 377–385

    PubMed  CAS  Google Scholar 

  • Mannherz HG, Goody RS, Konrad M, Nowak E (1980) The interaction of bovine pancreatic deoxyribonuclease I and skeletal muscle actin. Eur J Biochem 104: 367–379

    Article  PubMed  CAS  Google Scholar 

  • Markey F, Persson T, Lindberg U (1982) A 90,000-dalton actin-binding protein from platelets. Comparison with vilin and plasma brevin. Biochim Biophys Acta 709:122–133

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG (1993) Structure of gelsolin segment-1-actin complex and the mechanism of filament severing. Nature 364: 685–692

    Article  PubMed  CAS  Google Scholar 

  • Moon A, Drubin DG (1995) The ADF/cofilin proteins: stimulus-responsive modulators of actin dynamics. Mol Biol Cell 6: 1423–1431

    PubMed  CAS  Google Scholar 

  • Moraczewska J, Strzelecka-Golaszewska H, Moens P, dos Remedios CG (1996) Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy. Biochem J 317: 605–611

    PubMed  CAS  Google Scholar 

  • Moriyama K, Nishida E, Yonezawa N, Sakai H, Matsumoto S, Iida K, Yahara I (1990) Destrin, a mammalian actin-depolymerizing protein, is closely related to cofilin. Cloning and expression of porcine brain destrin cDNA. J Biol Chem 265: 5768–5773

    Google Scholar 

  • Moriyama K, Iida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Gene Cell 1: 73–86

    Article  CAS  Google Scholar 

  • Muneyuki E, Nishida E, Sutoh K, Sakai H (1985) Purification of cofilin, a 21,000 molecular weight actin-binding protein, from porcine kidney and identification of the cofilin-binding site in the actin sequence. J Biochem 97: 563–568

    PubMed  CAS  Google Scholar 

  • Nishida E, Kuwaki T, Maekawa S, Sakai H (1981) A new regulatory protein that affects the state if actin polymerization. J Biochem 89: 1655–1658

    PubMed  CAS  Google Scholar 

  • Nishida E, Maekawa S, Sakai A (1984) Cofilin, a protein in porcine brain that binds to actin filaments and inhibits their interactions with myosin and tropomyosin. Biochemistry 23: 5307–5313

    Article  PubMed  CAS  Google Scholar 

  • Ono S, Minami N, Abe H, Obinata A (1994) Characterization of a novel cofilin isoform that is predominantly expressed in mammalian skeletal muscle. J Biol Chem 269: 15280–15286

    PubMed  CAS  Google Scholar 

  • Oriol C, Dubord C, Landon F (1977) Crystallization of native striated-muscle actin. FEBS Lett 73: 89–91

    Article  PubMed  CAS  Google Scholar 

  • Page R, Lindberg U, Schutt CE (1998) Domain motions in actin. J Mol Biol 280: 463–474

    Article  PubMed  CAS  Google Scholar 

  • Safer D, Nachmias VT (1994) Beta thymosins as actin binding peptides. BioEssays 16: 473–479

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Cooper JA (1995) Control of actin assembly at filament ends. Annu Rev Cell Devel Biol 11: 497–518

    Article  CAS  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere N, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365: 810–816

    Article  PubMed  CAS  Google Scholar 

  • Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. I Biochemical studies of the interaction of tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem 246: 4866–4871

    Google Scholar 

  • Weber A, Pennise CR, Babcock CR, Fowler V (1994) Tropomodulin caps the pointed ends of actin filaments. J Cell Biol 127: 1627–1635

    Article  PubMed  CAS  Google Scholar 

  • Wriggers WJ, Tang X, Azuma T, Janmey PA (1998) Cofilin and gelsolin segment-1–molecular dynamics simulation and biochemical analysis predict a similar actin binding mode. J Mol Biol 282: 921–932

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kekic, M., Nosworthy, N.J., Dedova, I., Collyer, C.A., dos Remedios, C.G. (2001). Regulation of the Cytoskeleton Assembly: a Role for a Ternary Complex of Actin with Two Actin-Binding Proteins. In: dos Remedios, C.G., Thomas, D.D. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46560-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46560-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53675-5

  • Online ISBN: 978-3-540-46560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics