Skip to main content

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

Though the roots of experimental stress biology at the cellular and organismic level can be traced back to the middle of the last century (Nover 1989), a decisive breakthrough came only in 1962 with the report on stress-induced changes of gene activity in Drosophila (Ritossa 1962) and the subsequent identification of the newly synthesized heat stress proteins (Tissieres et al. 1974) and mRNAs, respectively (McKenzie et al 1975; McKenzie and Meselson 1977). The selectivity of induction and the high rate of accumulation of Hsps facilitated the cloning and sequencing of the hs genes in Drosophila and the demonstration that all organisms react similarly when exposed to heat stress or chemical stressors (Ashburner and Bonner 1979; Schlesinger et al. 1982; Nover 1984). The explosive development of molecular stress research in the following 10 years illustrated that the stress response represents a characteristic network of dramatic but transient changes at many levels of cellular structure and function, including gene expression (Atkinson and Walden 1985; Tomasovic 1989; Georgopoulos et al. 1990; Nover et al. 1990; Nover 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17: 241–254

    Article  PubMed  CAS  Google Scholar 

  • Atkinson BG, Walden DB (eds) (1985) Changes in eukaryotic gene expression in response to environmental stress. Academic Press, Orlando

    Google Scholar 

  • Bienz M, Pelham HRB (1987) Mechanisms of heat shock gene activation in higher eukaryotes. Adv Genet 24: 31–72

    Article  PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat shock proteins and development. Adv Genet 24: 1–29

    Article  PubMed  CAS  Google Scholar 

  • Deshaies RJ, Koch BD, Werner-Washburne M, Craig EA, Shekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332: 800–805

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ, Hemmingsen SM (1989) Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14: 339–342

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos C, Tissieres A, Morimoto R (eds) (1990) Stress proteins in biology and medicine, Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Goloubinoff P, Christeller JT, Gatenby AA, Lorimer GH (1989) Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP. Nature 342: 884–888

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Ann Rev Genet 22. 631–677

    Article  PubMed  CAS  Google Scholar 

  • McKenzie SL, Meselson M (1977) Translation in vitro of Drosophila heat-shock messages. J Mol Biol 117: 279–283

    Article  PubMed  CAS  Google Scholar 

  • McKenzie SL, Henikoff S, Meselson M (1975) Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci USA 72: 1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Nover L (ed) (1984) Heat shock response of eukaryotic cells. Springer, Berlin Heidelberg New York Nover L (1989) 125 years of experimental heat shock research: historical roots of a discipline. Genome 31: 668–670

    Google Scholar 

  • Nover L (ed) (1991) Heat shock response. CRC Press, Boca Raton.

    Google Scholar 

  • Nover L, Neumann D, Scharf KD (eds ) (1990) Heat shock and other stress response systems of plants Springer Berlin Heidelberg New York

    Google Scholar 

  • Ritossa F (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571–573

    Article  CAS  Google Scholar 

  • Rothman JE (1989) Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59: 591–601

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ, Ashbumer M, Tissieres A (eds) (1982) Heat shock: from bacteria to man. Cold Spring Harbor Lab, Cold Spring Harbor, New York

    Google Scholar 

  • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of D. melanogaster. Relation to chromosome puffs. J Mol Biol 84: 349–398

    Google Scholar 

  • Tomasovic SP (1989) Functional aspects of the mammalian heat-stress protein response. Life Chem Rep 7: 33–63

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nover, L., Hightower, L. (1991). Introduction. In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics