Skip to main content

Component Analysis of Granular Friction

  • Conference paper
Traffic and Granular Flow’05

Summary

We perform an analysis of the stick-slip properties of a granular bed. The granulate is confined to a circular channel and sheared by an overhead top plate with a stick-slip motion. We attempt to decompose the frictional torque F f subtended by the medium into its independent components by graphical and phenomenological analyses. We find clear functional dependence on the position, velocity and acceleration of the plate and the residual torque signal shows some dependence on the properties of the stick events. This article is related to that of Baldassarri et al. in these proceedings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hernán A. Makse, Jasna Brujić, and Sam F. Edwards. Statistical mechanics of jammed matter. In Heye Henrichson and Dietrich E. Wolf, editors, The Physics of Granular Media. Wiley, 2004.

    Google Scholar 

  2. R. P. Behringer, D. Howell, L. Kondic, S. Tennakoon, and C. Veje. Predictability and granular materials. Physica D, 133:1–17, 1999.

    Article  Google Scholar 

  3. A. Baldassarri, F. Dalton, A. Petri, L. Pietronero, G. Pontuale, and S. Zapperi. Granular shearing and barkhausen noise. 2005. Proceedings of the Traffic and Granluar Flow’ 05 conference held at Berlin, October 2005.

    Google Scholar 

  4. H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granular solids, liquis and gases. Rev. Mod. Phys., 68:1259, 1996.

    Article  Google Scholar 

  5. F. Lacombe, S. Zapperi, and H. J. Herrmann. Eur. Phys. J. E, 2:181–189, 2000.

    Article  Google Scholar 

  6. Mark O. Robbins. Jamming, friction and unsteady rheology. In A. J. Liu and S. R. Nagel, editors, Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales. Taylor and Francis, London, 2000.

    Google Scholar 

  7. Bob Behringer. Taking the temperature. Nature, 415:594–595, 2002.

    Article  Google Scholar 

  8. Alain Barrat, Jorge Kurchan, Vittorio Loreto, and Mauro Sellitto. Edwards’ measures for powders and glasses. Phys. Rev. Lett., 85:5034–5037, 2000.

    Article  Google Scholar 

  9. H. A. Makse and J. Kurchan. Nature, 415:614–617, 2002.

    Article  Google Scholar 

  10. Leonardo E. Silbert, Deniz Ertaş, Gary S. Grest, Thomas C-Halsey, and Dov Levine. Analogies between granular jamming and the liquid-glass transition. Phys. Rev. E, 65:051307, 2002.

    Article  Google Scholar 

  11. L. Berthier, L. F. Cugliandolo, and J. L. Iguain. Glassy systems under time-dependent driving forces: Application to slow granular rheology. Phys. Rev. E, 63:051302, 2001.

    Article  Google Scholar 

  12. Anita Mehta and G. C. Barker. Glassy dynamics in granular compaction. J. Phys.: Condens. Matter, 12:6619–6628, 2000.

    Article  Google Scholar 

  13. Antonio Coniglio and Mario Nicodemi. The jamming transition of granular matter. J. Phys.: Condens. Matter, 12:6601–6610, 2000.

    Article  Google Scholar 

  14. Einat Aharonov and David Sparks. Rigidity phase transition in granular packings. Phys. Rev. E, 60:6890–6896, 1999.

    Article  Google Scholar 

  15. Patrick Mayor, Gianfranco D’Anna, and Gérard Gremaud. Jamming in a weakly perturbed granular media. Materials Sc. and Eng. A, 370:307–310, 2004.

    Article  Google Scholar 

  16. D. Howell, R. P. Behringer, C. Veje. Stress fluctuations in a 2d granular couette experiment: a continuous transition. Phys. Rev. Lett., 82:5241, 1999.

    Article  Google Scholar 

  17. B. Miller, C. O’Hern, and R. P. Behringer. Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett., 77:3110–3113, 1996.

    Article  Google Scholar 

  18. Jasna Brujić, Sam F. Edwards, Dmitri V. Grinev, Ian Hopkinson, Djordje Brujić, and Hernán A. Makse. 3d bulk measurements of the force distributions in a compressed emulsion system. Faraday Discuss., 123:207–220, 2003.

    Article  Google Scholar 

  19. A. Drescher and G. de Josselin de Jong. Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids, 20:337–351, 1972.

    Article  Google Scholar 

  20. C.H. Scholz. The mechanics of earthquakes and faulting. Cambridge University Press, England, 1990.

    Google Scholar 

  21. T. G. Drake. Structural features in granular flows. J. Geophys. Res., 95:8681–8696, 1990.

    Article  Google Scholar 

  22. P. A. Thompson and G. S. Grest. Phys. Rev. Lett., 67:1751–1754, 1991.

    Article  Google Scholar 

  23. H. M. Jaeger, Chu-Heng Liu, S. R. Nagel, and T. A. Witten. Europhys. Lett., 11:619–624, 1990.

    Google Scholar 

  24. Fergal Dalton, Francis Farrelly, Alberto Petri, Luciano Pietronero, Luca Pitolli, and Giorgio Pontuale. Shear stress fluctuations in the granular liquid and solid phases. Phys. Rev. Lett., 95:138001, 2005.

    Article  Google Scholar 

  25. F. Dalton and D. Corcoran. Phys. Rev. E., 65:31310–31315, 2002.

    Article  Google Scholar 

  26. F. Dalton and D. Corcoran. Phys. Rev. E., 63:61312–61314, 2001.

    Article  Google Scholar 

  27. R. Lynch, D. Corcoran, and F. Dalton. The onset to criticality in a sheared granular medium. In A. Méndez-Vilas (Ed.), Recent Advances in Multidisciplinary Applied Physics, pages 369–374, 2003. Proceedings of the First International Conference on Applied Physics (APHYS-2003).

    Google Scholar 

  28. A. Baldassarri, F. Dalton, A. Petri, S. Zapperi, G. Pontuale, and L. Pietronero. Brownian forces in sheared granular matter. 2005. cond-mat/0507533.

    Google Scholar 

  29. F. Dalton, A. Petri, G. Pontuale, and L. Pietronero. Stress fluctuations and the solid/fluid transition in a sheared granular bed. In R. García-Rojo, H. J. Herrmann, and S. McNamara (Eds.), Powders and Grains 2005, page 353, 2005.

    Google Scholar 

  30. A. Johansen, P. Dimon, C. Ellegaard, J. S. Larsen, and H. H. Rugh. Phys. Rev. E, 48:4779–4790, 1993.

    Article  Google Scholar 

  31. B. Briscoe, A. Winkler, and M. J. Adams. J. Phys. D: Appl. Phys., 18:2143–2143, 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dalton, F., Petri, A., Pontuale, G., Pietronero, L. (2007). Component Analysis of Granular Friction. In: Schadschneider, A., Pöschel, T., Kühne, R., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow’05. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-47641-2_8

Download citation

Publish with us

Policies and ethics