Skip to main content

Reformulation and Decomposition of Integer Programs

  • Chapter
  • First Online:
50 Years of Integer Programming 1958-2008

Abstract

We examine ways to reformulate integer and mixed integer programs. Typically, but not exclusively, one reformulates so as to obtain stronger linear programming relaxations, and hence better bounds for use in a branch-and-bound based algorithm. First we cover reformulations based on decomposition, such as Lagrangean relaxation, the Dantzig-Wolfe reformulation and the resulting column generation and branch-and-price algorithms. This is followed by an examination of Benders’ type algorithms based on projection. Finally we discuss extended formulations involving additional variables that are based on problem structure. These can often be used to provide strengthened a priori formulations. Reformulations obtained by adding cutting planes in the original variables are not treated here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Aardal and A.K. Lenstra, Hard equality constrained integer knapsacks, Erratum: Mathematics of Operations Research 31, 2006, page 846, Mathematics of Operations Research 29 (2004) 724–738.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Balakrishnan, T.L. Magnanti, and R.T. Wong, A dual ascent procedure for large-scale uncapacitated network design, Operations Research 37 (1989) 716–740.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Balas, Disjunctive programming: properties of the convex hull of feasible points, originally as GSIA Management Science Research Report MSRR 348, Carnegie Mellon University, 1974, Discrete Applied Mathematics 89 (1998) 1–44.

    Article  Google Scholar 

  4. E. Balas and W.R. Pulleyblank, The perfectly matchable subgraph polytope of a bipartite graph, Networks 13 (1983) 495–516.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions with a subgradient method, Mathematical Programming 87 (2000) 385–399.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.J. Bartholdi, J.B. Orlin, and H. Ratliff, Cyclic scheduling via integer programs with circular ones, Mathematical Programming 28 (1980) 1074–1085.

    MathSciNet  MATH  Google Scholar 

  7. G. Belov, A.N. Letchford, and E. Uchoa, A node-flow model for the 1D stock cutting: robust branch-cut-and-price, Tech. report, University of Lancaster, 2005.

    Google Scholar 

  8. H. Ben Amor, J. Desrosiers, and A. Frangioni, On the choice of explicit stabilizing terms in column generation, Discrete Applied Mathematics 157 (2009) 1167–1184.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.F. Benders, Partitioning procedures for solving mixed variables programming problems, Numerische Mathematik 4 (1962) 238–252.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Bienstock and B.McClosky, Tightening simple mixed-integer sets with guaranteed bounds, Tech. report, Columbia University, New York, July 2008.

    Google Scholar 

  11. O. Bilde and J. Krarup, Plant location, set covering and economic lot sizes: An O(mn) algorithm for structured problems, Optimierung bei Graphentheoretischen und Ganzzahligen Probleme (L. Collatz et al., ed.), Birkhauser Verlag, Basel, 1977, pp. 155–180.

    Google Scholar 

  12. O. Bilde and J. Krarup, Sharp lower bounds and efficient algorithms for the simple plant location problem, Annals of Discrete Mathematics 1 (1977) 79–97.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Borndörfer, A. Löbel, and S. Weider, A bundle method for integrated multi-depot vehicle and duty scheduling in public transit, ZIB Report 04-14, Konrad-Zuse Zentrum, Berlin, 2004.

    Google Scholar 

  14. R. Borndörfer, U. Schelten, T. Schlechter, and S. Weider, A column generation approach to airline crew scheduling, ZIB Report 05-37, Konrad-Zuse Zentrum, Berlin, 2005.

    Google Scholar 

  15. G.H. Bradley, P.L. Hammer, and L.A. Wolsey, Coefficent reduction for inequalities in 0-1 variables, Mathematical Programming 7 (1974) 263–282.

    Article  MathSciNet  MATH  Google Scholar 

  16. O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Vanderbeck, Comparison of bundle and classical column generation, Mathematical Programming 113 (2008) 299–344.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Campêlo, V. Campos, and R. Corréa, On the asymmetric representatives formulation for the vertex coloring problem, Notes in Discrete Mathematics 19 (2005) 337–343.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Cheney and A. Goldstein, Newton’s method for convex programming and Tchebycheff approximations, Numerische Mathematik 1 (1959) 253–268.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey, Network formulations of mixed integer programs, Mathematics of Operations Research 34 (2009) 194–209.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Conforti and L.A. Wolsey, Compact formulations as a union of polyhedra, Mathematical Programming 114 (2008) 277–289.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Conforti, L.A. Wolsey, and G. Zambelli, Projecting an extended formulation for mixed integer covers on bipartite graphs, Tech. report, University of Padua, November 2008.

    Google Scholar 

  22. G.B. Dantzig and P.Wolfe, Decomposition principle for linear programs, Operations Research 8 (1960) 101–111.

    Article  MATH  Google Scholar 

  23. J.V. de Carvalho, Exact solution of bin packing problems using column generation and branchand-bound, Annals of Opererations Research 86 (1999) 629–659.

    Article  MATH  Google Scholar 

  24. J. Desrosiers, Y. Dumas, M.M. Solomon, and F. Soumis, Time constrained routing and scheduling, Network Routing (C.L. Monma M.O. Ball, T.L. Magnanti and G.L. Nemhauser, eds.), Handbooks in Operations Research and Management Science, Vol. 8, Elsevier, 1995.

    Google Scholar 

  25. J. Desrosiers and F. Soumis, A column generation approach to the urban transit crew scheduling problem, Transportation Science 23 (1989) 1–13.

    Article  MATH  Google Scholar 

  26. J. Desrosiers, F. Soumis, and M. Desrochers, Routing with time windows by column generation, Networks 14 (1984) 545–565.

    Article  MATH  Google Scholar 

  27. O. Du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen, Stabilized column generation, Discrete Mathematics 194 (1999) 229–237.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Dzielinski and R. Gomory, Optimal programming of lot-sizes, inventories and labor allocations, Management Science 11 (1965) 874–890.

    Article  Google Scholar 

  29. F. Eisenbrand, G. Oriolo, G. Stauffer, and P. Ventura, Circular ones matrices and the stable set polytope of quasi-line graphs, Integer Programming and Combinatorial Optimization, IPCO 2005 (M. Jünger and V. Kaibel, eds.), Lecture Notes in Computer Science 3509, Springer, 2005, pp. 291–305.

    Google Scholar 

  30. F. Eisenbrand and G. Shmonin, Carathéodory bounds for integer cones, Operations Research Letters 34 (2006) 564–568.

    Article  MathSciNet  MATH  Google Scholar 

  31. I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers, Dynamic aggregation of setpartitioning constraints in column generation, Operations Research 53 (2005) 632–645.

    Article  MATH  Google Scholar 

  32. G.D. Eppen and R.K. Martin, Solving multi-item capacitated lot-sizing problems using variable definition, Operations Research 35 (1987) 832–848.

    Article  MATH  Google Scholar 

  33. D. Erlenkotter, A dual-based procedure for uncapacitated facility location, Operations Research 26 (1978) 992–1009.

    Article  MathSciNet  MATH  Google Scholar 

  34. Y.M. Ermolẻv, Methods of solution of nonlinear extremal problems, Kibernetica 2 (1966) 1–17.

    MathSciNet  Google Scholar 

  35. H. Everett III, Generalized lagrange multiplier method for solving problems of optimal allocation of resources, Operations Research 11 (1963) 399–417.

    Article  MathSciNet  MATH  Google Scholar 

  36. Gy. Farkas, On the applications of the mechanical principle of Fourier, Mathematikai és Természettudományi Értesotö 12 (1894) 457–472.

    Google Scholar 

  37. M. Fischetti, D. Salvagnin, and A. Zanette, Minimal infeasible subsystems and Benders’ cuts, Mathematical Programming to appear (2009).

    Google Scholar 

  38. M.L. Fisher, The lagrangean relaxation method for solving integer programming problems, Management Science 27 (1981) 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  39. L.R. Ford, Jr. and D.R. Fulkerson, A suggested computation for maximal multi-commodity network flows, Management Science 5 (1958) 97–101.

    Article  MathSciNet  MATH  Google Scholar 

  40. J.B.J. Fourier, Solution d’une question particulière du calcul des inégalités, Nouveau Bulletin des Sciences par la Société Philomatique de Paris (1826) 317–319.

    Google Scholar 

  41. J.B.J. Fourier, from 1824, republished as Second extrait in oeuvres de fourier, tome ii (G. Darboux, ed.), Gauthier-Villars, Paris, 1890, see D.A. Kohler, Translation of a report by Fourier on his work on linear inequalities, Opsearch 10 (1973) 38–42.

    MathSciNet  Google Scholar 

  42. R. Fukosawa, H. Longo, J. Lysgaard, M. Reis, E. Uchoa, and R.F. Werneck, Robust branchand-cut-and-price for the capacitated vehicle routing problem, Mathematical Programming 106 (2006) 491–511.

    Article  MathSciNet  MATH  Google Scholar 

  43. A.M. Geoffrion, Elements of large scale mathematical programming I and II, Management Science 16 (1970) 652–691.

    Article  MathSciNet  MATH  Google Scholar 

  44. A.M. Geoffrion, Generalized Benders’ decomposition, Journal of Optimization Theory and Applications 10 (1972) 237–260.

    Article  MathSciNet  MATH  Google Scholar 

  45. A.M. Geoffrion, Lagrangean relaxation for integer programming, Mathematical Programming Study 2 (1974) 82–114.

    Article  MathSciNet  MATH  Google Scholar 

  46. A.M. Geoffrion and G.W. Graves, Multicommodity distribution design by Benders’ decomposition, Management Science 20 (1974) 822–844.

    Article  MATH  Google Scholar 

  47. R. Giles and W.R. Pulleyblank, Total dual integrality and integral polyhedra, Linear algebra and its applications 25 (1979) 191–196.

    Article  MathSciNet  MATH  Google Scholar 

  48. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem, Operations Research 9 (1961) 849–859.

    Article  MathSciNet  MATH  Google Scholar 

  49. P.C. Gilmore and R.E. Gomory, A linear programming approach to the cutting stock problem: Part ii, Operations Research 11 (1963) 863–888.

    Article  MATH  Google Scholar 

  50. J.-L. Goffin and J.-P. Vial, Convex non-differentiable optimization: a survey focused on the analytic center cutting plane method, Optimization Methods and Software 17 (2002) 805–867.

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Gouveia, A 2n constraint formulation for the capacitated minimal spanning tree problem, Operations Research 43 (1995) 130–141.

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica 1 (1981) 169–197.

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Guignard and S. Kim, Lagrangean decomposition for integer programming: Theory and applications, RAIRO 21 (1987) 307–323.

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees, Operations Research 18 (1970) 1138–1162.

    Article  MathSciNet  MATH  Google Scholar 

  55. M. Held and R.M. Karp, The traveling salesman problem and minimum spanning trees: Part II, Mathematical Programming 1 (1971) 6–25.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Held, P. Wolfe, and H.P. Crowder, Validation of subgradient optimization, Mathematical Programming 6 (1974) 62–88.

    Article  MathSciNet  MATH  Google Scholar 

  57. V. Jain and I.E. Grossman, Algorithms for hybrid milp/clp models for a class of optimization problems, INFORMS J. Computing 13 (2001) 258–276.

    Article  MathSciNet  Google Scholar 

  58. R. Jans and Z. Degraeve, Improved lower bounds for the capacitated lot sizing problem with set-up times, Operations Research Letters 32 (2004) 185–195.

    Article  MathSciNet  MATH  Google Scholar 

  59. K. Jornsten and M. Nasberg, A new Lagrangian relaxation approach to the generalized assignment problem, European Journal of Operational Research 27 (1986) 313–323.

    Article  MathSciNet  MATH  Google Scholar 

  60. J.E. Kelley, The cutting plane method for solving convex programs, SIAM Journal 8 (1960) 703–712.

    MathSciNet  MATH  Google Scholar 

  61. K.C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical Programming 27 (1983) 320–341.

    Article  MathSciNet  MATH  Google Scholar 

  62. G. Laporte and F.V. Louveaux, The integer L-shaped method for stochastic integer programs with complete recourse, Operations Research Letters 13 (1993) 133–142.

    Article  MathSciNet  MATH  Google Scholar 

  63. C. Lemaréchal, An algorithm for minimizing convex functions, Information Processing ’74 (J.L. Rosenfeld, ed.), North Holland, 1974, pp. 552–556.

    Google Scholar 

  64. C. Lemaréchal, Nonsmooth optimization and descent methods, Tech. report, IIASA, 1978.

    Google Scholar 

  65. C. Lemaréchal, Lagrangean relaxation, Computational Combinatorial Optimization (M. Jünger and D. Naddef, eds.), Lecture Notes in Computer Science 2241, Springer, 2001, pp. 112–156.

    Google Scholar 

  66. A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, Factoring polynomials with rational coefficients, Mathematische Annalen 261 (1982) 515–534.

    Article  MathSciNet  MATH  Google Scholar 

  67. H.W. Lenstra, Jr., Integer programming with a fixed number of variables, Mathematics of Operations Research 8 (1983) 538–547.

    Article  MathSciNet  MATH  Google Scholar 

  68. T.L. Magnanti and R.T. Wong, Accelerated Benders’ decomposition: Algorithmic enhancement and model selection criteria, Operations Research 29 (1981) 464–484.

    Article  MathSciNet  MATH  Google Scholar 

  69. R.K. Martin, Generating alternative mixed integer programming models using variable definition, Operations Research 35 (1987) 820–831.

    Article  MathSciNet  MATH  Google Scholar 

  70. R.K. Martin, Using separation algorithms to generate mixed integer model reformulations, Operations Research Letters 10 (1991) 119–128.

    Article  MathSciNet  MATH  Google Scholar 

  71. R.K. Martin, R.L. Rardin, and B.A. Campbell, Polyhedral characterization of discrete dynamic programming, Operations Research 38 (1990) 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  72. R.R. Meyer, On the existence of optimal solutions to integer and mixed integer programming problems, Mathematical Programming 7 (1974) 223–235.

    Article  MathSciNet  MATH  Google Scholar 

  73. H. Minkowski, Geometrie der Zahlen (erste Lieferung), Teubner, Leipzig, 1986.

    Google Scholar 

  74. P.J. Neame, Nonsmooth dual methods in integer programing, Ph.D. thesis, Depart. of Math. and Statistics, The University of Melbourne, 1999.

    Google Scholar 

  75. M.W. Padberg, (1, k)-configurations and facets for packing problems, Mathematical Programming 18 (1980) 94–99.

    Article  MathSciNet  MATH  Google Scholar 

  76. A. Pessoa, E. Uchoa, M. Poggi de Aragao, and R. Rodrigues, Algorithms over arc-time indexed formulations for single and parallel machine scheduling problems, Tech. report, Rio de Janeiro, 2009.

    Google Scholar 

  77. Y. Pochet and L.A. Wolsey, Production planning by mixed-integer programming, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2006.

    MATH  Google Scholar 

  78. B.T. Polyak, A general method for solving extremum problems, Soviet Mathematic Doklady 8 (1967) 593–597.

    MATH  Google Scholar 

  79. A.A.B. Pritsker, L.J. Watters, and P.J. Wolfe, Multiproject scheduling with limited resources: a zero-one programming approach, Management Science 16 (1969) 93–108.

    Article  Google Scholar 

  80. A. Prodon, T.M. Liebling, and H. Gröflin, Steiner’s problem on 2-trees, Tech. Report RO 850351, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1985.

    Google Scholar 

  81. R.L. Rardin and U. Choe, Tighter relaxations of fixed charge network flow problems, Tech. Report report J-79-18, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1979.

    Google Scholar 

  82. L.-M. Rousseau, M. Gendreau, and D. Feillet, Interior point stabilization for column generation, Tech. report, University de Montreal, 2003.

    Google Scholar 

  83. D.M. Ryan and B.A. Foster, An integer programming approach to scheduling, Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Scheduling (A. Wren, ed.), North-Holland, Amsterdam, 1981, pp. 269–280.

    Google Scholar 

  84. F. Soumis, Decomposition and column generation, Annotated Bibliographies in Combinatorial Optimization (F. Maffioli M. Dell’Amico and S. Martello, eds.), Wiley, Chichester, 1997, pp. 115–126.

    Google Scholar 

  85. E. Uchoa, R. Fukasawa, J. Lysgaard, A. Pessoa, M.P. Aragao, and D. Andrade, Robust branchand- cut-and-price for the capacitated minimum spanning tree problem over an extended formulation, Mathematical Programming 112 (2008) 443–472.

    Article  MathSciNet  MATH  Google Scholar 

  86. H. Uzawa, Iterative methods for concave programming, Studies in Linear and Nonlinear Programming (K. Arrow, L. Hurwicz, and H. Uzawa, eds.), Stanford University Press, 1959.

    Google Scholar 

  87. R.M. Van Slyke and R. Wets, L-shaped linear programs with applications to optimal control and stochastic programming, SIAM J. of Applied Mathematics 17 (1969) 638–663.

    Article  MathSciNet  MATH  Google Scholar 

  88. M. Van Vyve, Linear programming extended formulations for the single-item lot-sizing problem with backlogging and constant capacity, Mathematical Programming 108 (2006) 53–78.

    Article  MathSciNet  MATH  Google Scholar 

  89. F. Vanderbeck, On Dantzig-Wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm, Operations Research 48 (2000) 111–128.

    Article  MathSciNet  MATH  Google Scholar 

  90. F. Vanderbeck, Branching in branch-and-price: a generic scheme, Research Report Inria-00311274, University Bordeaux I and INRIA, 2006, revised 2008.

    Google Scholar 

  91. F. Vanderbeck and L.A. Wolsey, An exact algorithm for IP column generation, Operations Research Letters 19 (1996) 151–159.

    Article  MathSciNet  MATH  Google Scholar 

  92. D. Villeneuve, J. Desrosiers, M.E. Lübbecke, and F. Soumis, On compact formulations for integer programs solved by column generation, Annals of Operations Research 139 (2006) 375–388.

    Article  MathSciNet  MATH  Google Scholar 

  93. S.Weider, Integration of vehicle and duty scheduling in public transport, Ph.D. thesis, Faculty of Mathematics and Sciences, The Technical University, Berlin, 2007.

    Google Scholar 

  94. P.Wentges, Weighted dantzig-wolfe decomposition for linear mixed-integer programming, International Transactions on Operational Research 4 (1997) 151–162.

    MATH  Google Scholar 

  95. H. Weyl, The elementary theory of convex polyhedra, Contributions to the Theory of Games I (H.W. Kuhn and A.W. Tucker, eds.), Princeton University Press, Princton N.J, translated from 1935 original in German, 1950, pp. 3–18.

    Google Scholar 

  96. R.T. Wong, Integer programming formulations of the traveling salesman problem, Proceedings of IEEE International Conference on Circuits and Computers, 1980, pp. 149–152.

    Google Scholar 

  97. R.T.Wong, Dual ascent approach for Steiner tree problems on directed graphs, Mathematical Programming 28 (1984) 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  98. M. Yannakakis, Expressing combinatorial optimization problems by linear programs, Journal of Computer and System Sciences 43 (1991) 441–466.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Vanderbeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vanderbeck, F., Wolsey, L.A. (2010). Reformulation and Decomposition of Integer Programs. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_13

Download citation

Publish with us

Policies and ethics