Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

The principles of protecting the subject undergoing investigation by radiation are clear and well known: it is the responsibility of all radiological services to ensure the information required for the clinical management of the patient is obtained with the lowest practicable exposure to radiation. Within this clear objective, however, medical investigation operates in a constantly changing scenario influenced by increasing knowledge of disease processes and advancing technological development. This syndrome ensures that as time passes differing objectives and concerns come to the fore. Over the past few years the emergence of multidetector computed tomography (MDCT) has posed new challenges in radiological protection, to the extent that some now claim that this represents today’s greatest single challenge in clinical radiation protection. This book expounds the challenges posed by MDCT to scientists and physicians and in this chapter we provide an introduction to the main themes which are of concern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson K, Cowan NC (2004) Multidetector CT urography. Radiol Now 21:4–6

    Google Scholar 

  • Benjamin MS, Drucker EA, McLoud TC, Shepherd J (2003) Small pulmonary nodules: detection at chest CT and outcome. Radiology 226:489–493

    Article  PubMed  Google Scholar 

  • Berland LL, Smith JK (1998) Multidetector-array CT: once again, technology creates new opportunities. Radiology 209:327–329

    PubMed  CAS  Google Scholar 

  • BMU (1996) (Bundesministerium fur Umwelt, Naturschutz und Reaktorsicherheit). Umweltradioaktivitat und Strahlenbelastung im Jahre. Deutscher Bundestag 13. Wahlperiode; Drucksache 13/8630

    Google Scholar 

  • Brix G, Nagel HD, Stamm G et al (2003) Radiation exposure in multi-slice versus single slice spiral CT: results of a nationwide survey. Eur Radiol 13:1979–1991

    Article  PubMed  CAS  Google Scholar 

  • Caramella D, Bartolozzi C (eds) (2002) 3D image processing: techniques and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cohnen M, Fischer H, Hamacher J et al (2000) CT of the head by use of reduced current and kilovoltage: relationship between image quality and dose reduction. Am J Neuroradiol 21:1654–1660

    PubMed  CAS  Google Scholar 

  • European Commission. European Guidelines on quality criteria for computed tomography (2000). EUR 16262EN (Luxembourg: EC)

    Google Scholar 

  • Garney CJ, Hanlon R (2002) Computed tomography in clinical practice. BMJ 324:1077–1080

    Article  Google Scholar 

  • Golding SJ, Shrimpton PC (2002) Radiation dose in CT: are we meeting the challenge? Br J Radiol 75:1–4

    PubMed  CAS  Google Scholar 

  • Hounsfield GN (1973) Computerised transverse axial scanning (tomography). Br J Radiol 46:1016

    Article  PubMed  CAS  Google Scholar 

  • Hu H, He HD, Foley WD, Fox SH (2000) Four multidetector-row helical CT: image quality and volume coverage speed. Radiology 215:55–62

    PubMed  CAS  Google Scholar 

  • Iannaccone R, Laghi A, Catalano C et al (2003) Feasibility of ultra-low dose multislice CT colonography for the detection of colorectal lesions: preliminary experience. Eur Radiol 13:1297–1302

    PubMed  Google Scholar 

  • International Commission on Radiological Protection (2001) Managing patient dose in computed tomography. ICRP Publication 87. Ann ICRP 30(4). Pergamon, Oxford

    Google Scholar 

  • Irie T, Kajitani M, Itai Y (2001) CT fluoroscopy-guided intervention: marked reduction of scattered radiation dose to the physicians hand by use of a lead plate and an improved I-I device. J Vasc Interv Radiol 12:1417–1421

    Article  PubMed  CAS  Google Scholar 

  • Jackson A, Whitehouse RW (1993) Low-dose computed tomographic imaging in orbital trauma. Br J Radiol 66:655–661

    PubMed  CAS  Google Scholar 

  • Johnson CD (2001) Pancreatic carcinoma: developing a protocol for multidetector row CT. Radiology 220:3–4

    PubMed  CAS  Google Scholar 

  • Kalender WA (2000) Computed tomography. Publicis MCD, Munich

    Google Scholar 

  • Kalender W (2004) Dose management in multislice spiral computed tomography. Eur Radiol Syllabus 14:40–49

    Article  Google Scholar 

  • Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176:181–183

    PubMed  CAS  Google Scholar 

  • Kalra KM, Maher M, Toth TL et al (2004) Techniques and applications of automatic tube current modulation. Radiology 233:649–657

    Article  PubMed  Google Scholar 

  • Kawashima A, Vrtiska TJ, LeRoy AJ et al (2004) CT urography. RadioGraphics 24:S35–S54

    Article  PubMed  Google Scholar 

  • Lauenstein TC, Goehde SC, Herborn CU et al (2004) Whole-body MR imaging: evaluation of patients for metastases. Radiology 233:139–148

    Article  PubMed  Google Scholar 

  • Lewis MA, Edyvean S (2005) Patient dose reduction in CT. Br J Radiol 78:880–883

    Article  PubMed  CAS  Google Scholar 

  • Makayama Y, Yamashita Y, Takahahi M (2001) CT of the aorta and its major branches. In: Reiser M, Takahashi M, Modic M, Bruening R (eds) Multislice CT. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Mayo JR (1997) Opinion response to acute pulmonary embolism: the role of computed tomographic imaging. J Thoracic Imaging 12:95–97

    Article  Google Scholar 

  • Mayo JR, Hartman, TE, Lee KS et al (1995) CT of the chest: minimal tube current required for good image quality with the least radiation dose. Am J Roentgenol 164:603–607

    CAS  Google Scholar 

  • Mayo JR, Whittall KP, Leung AN et al (1997) Simulated dose reduction in conventional chest CT: validation study. Radiology 202:453–457

    PubMed  CAS  Google Scholar 

  • Mettler FA, Wiest PW, Locken JA, Kelsey CA (2000) CT scanning: patterns of use and dose. J Radiol Prot 20:353–359

    Article  PubMed  Google Scholar 

  • Mini RL, Vock P, Mury R, Schneeberger PP (1995) Radiation exposure of patients who undergo CT of the Trunk. Radiology 195:557–562

    PubMed  CAS  Google Scholar 

  • Mori S, Endo M, Nishizawa K et al (2006) Comparison of patient doses in 256-slice CT and 16-slice CT scanners. Br J Radiol 79:56–61

    Article  PubMed  CAS  Google Scholar 

  • Nicholson R, Fetherston S (2002) Primary radiation outside the imaged volume. Br J Radiol 75:518–522

    PubMed  CAS  Google Scholar 

  • Nishizawa K, Maruyama T, Takayama M et al (1991) Determinations of organ doses and effective dose equivalents from computed tomographic examinations. Br J Radiol 64:20–28

    PubMed  CAS  Google Scholar 

  • Olerud HM (1997) Analysis of factors influencing patient doses from CT in Norway. Radiat Prot Dosim 71:123–133

    Google Scholar 

  • Olerud HM, Obberg S, Widmark A, Hauser M (2002) Physician and patient radiation dose in various CT guided biopsy protocols. Sixth European ALARA Network on “Occupational Exposure Optimisation in the Medical Field and Radiopharmaceutical Industry”. Madrid, Spain, 23–25 October 2002

    Google Scholar 

  • Poll LW, Cohnen M, Brachten S, Ewen K, Modder U (2002) Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (“ECG pulsing”): phantom measurements. Rofo 174:1500–1505

    PubMed  CAS  Google Scholar 

  • Raptopoulos V, Katson G, Rosen P et al (2003) Acute appendicitis: effect of increased use of CT on selecting patients earlier. Radiology 226:521–526

    Article  PubMed  Google Scholar 

  • Rathburn SW, Raskob GE, Whitsett TL (2000) Sensitivity and specificity of helical computed tomography in the diagnosis of pulmonary embolism: a systematic review. Ann Int Med 132:227–232

    Google Scholar 

  • Royal College of Radiologists (2006) Making the Best Use of a Department of Clinical Radiology Guidelines for Doctors. Fifth Edition. On line publication at http://www.rcr.ac.uk/index.asp?PageID=310&PublicationID=71 (access on May 26, 2006)

  • Scheck RJ, Coppenrath EM, Kellner MW et al (1998) Radiation dose and image quality in spiral computed tomography: multicentre evaluation at six institutions. Br J Radiol 71:734–744

    PubMed  CAS  Google Scholar 

  • Semelka RC (2005) Radiation risks from CT scans: a call for patient-focused imaging. Medscape Radiology 6(1)

    Google Scholar 

  • Shrimpton PC, Edyvean S (1998) CT scanner dosimetry. Br J Radiol 71:1–3

    PubMed  CAS  Google Scholar 

  • Shrimpton PC, Jones DG, Hillier MC et al (1991) Survey of CT practice in the UK. Part 2: dosimetric aspects. NRPB Report R249. NRPB, Chilton, UK

    Google Scholar 

  • Shrimpton PC, Hillier MC, Lewis MA, Dunn M (2005) Doses from computed tomography (CT). Examinations in the UK — 2003 Review. NRPB-W67

    Google Scholar 

  • Smith RC, Verga M, McCarthy S, Rosenfield AT (1996) Diagnosis of acute flank pain: value of unenhanced helical CT. Am J Roentgenol 166:97–101

    CAS  Google Scholar 

  • Smith A, Shah GA, Kron T (1998) Variation of patient dose in head CT. Br J Radiol 71:1296–1301

    PubMed  CAS  Google Scholar 

  • Starck G, Lonn L, Cederblad A et al. (1998) Radiation dose reduction in CT: application to tissue area and volume determination. Radiology 209:397–403

    PubMed  CAS  Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (2000) Sources and effects of ionising radiation. UNSCEAR Vol I

    Google Scholar 

  • Vining DJ (1997) Virtual colonoscopy. Gastrointest Endosc Clin N Am 7:285–291

    PubMed  CAS  Google Scholar 

  • Wells ES, Ginsberg JS, Anderson DR et al (1998) Use of a clinical model for safe management of patients with suspected pulmonary embolism. Ann Intern Med 129:997–1005

    PubMed  CAS  Google Scholar 

  • Wittram C, Maher MM, Yoo AJ et al (2004) CT angiography of pulmonary embolism: diagnosis criteria and causes of misdiagnosis. RadioGraphics 24:1219–1238

    Article  PubMed  Google Scholar 

  • Yates SJ, Pike LC, Goldstone KE (2004) Effect of multislice scanners on patient dose from routine CT examinations in East Anglia. Br J Radiol 77:472–478

    Article  PubMed  CAS  Google Scholar 

  • Zoetelief J, Geleijns J (1998) Patient dose in spiral CT. Br J Radiol 71:584–586

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Patel, R., Golding, S. (2007). Clinical Expansion of CT and Radiation Dose. In: Tack, D., Gevenois, P.A. (eds) Radiation Dose from Adult and Pediatric Multidetector Computed Tomography. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68575-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68575-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28888-6

  • Online ISBN: 978-3-540-68575-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics