Skip to main content

Chloroplast Membrane Lipid Biosynthesis and Transport

  • Chapter
The Chloroplast

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 13))

Abstract

The photosynthetic membranes of chloroplasts are characterized by a high abundance of glycolipids. The two galactolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG) are the predominant constituents of thylakoid membranes, while phospholipids (phosphatidylcholine, phosphatidylglycerol) and a sulfolipid (sulfoquinovosyldiacylglycerol) are minor components. Galactolipids are synthesized in the envelope membranes from precursors originating from the chloroplast or from the endoplasmic reticulum (ER). Direct contact sites (“plastid-associated membranes”) between the ER and the chloroplast may be involved in the transport of lipid precursors to the envelope membranes. During chloroplast development, thylakoids are established from invaginations of the inner envelope, whereas in mature chloroplasts, a vesicle-based transport system was suggested to supply galactolipids to the thylakoids. During phosphate limitation, phospholipids are replaced with glycolipids in plastidial and extraplastidial membranes. DGDG produced in the chloroplast was suggested to be transferred to the mitochondria via direct contact sites. The transport of DGDG to the plasma membrane and tonoplast is believed to be mediated via the ER and Golgi vesicle trafficking system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achleitner G, Gaigg B, Krasser A, Kainersdorfer E, Kohlwein SD, Perktold A, Zellnig G, Daum G (1999) Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem 264:545–553

    PubMed  CAS  Google Scholar 

  • Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transport system: A bio-informatics approach. BMC Genomics 5

    Google Scholar 

  • Andersson MX, Kjellberg JM, Sandelius AS (2001) Chloroplast biogenesis. Regulation of lipid transport to the thylakoid in chloroplasts isolated from expanding and fully expanded leaves of pea. Plant Physiol 127:184–193

    CAS  Google Scholar 

  • Andersson MX, Stridh MH, Larsson KE, Liljenberg C, Sandelius AS (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537:128–132

    PubMed  CAS  Google Scholar 

  • Andersson MX, Kjellberg JM, Sandelius AS (2004) The involvement of cytosolic lipases in converting phosphatidyl choline to substrate for galactolipid synthesis in the chloroplast envelope. Biochim Biophys Acta 1684:46–53

    PubMed  CAS  Google Scholar 

  • Andersson MX, Larsson KE, Tjellstrom H, Liljenberg C, Sandelius AS (2005) Phosphate-limited oat: The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280:27578–27586

    PubMed  CAS  Google Scholar 

  • Andersson MX, Hamberg M, Kourtchenko O, Brunnström Å, McPhail KL, Gerwick WH, Göbel C, Feussner I, Ellerstrom M (2006) Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana : Formation of a novel oxo-phytodienoic acid-containing galactolipid, Arabidopside E. J Biol Chem 281:31528–31537

    PubMed  CAS  Google Scholar 

  • Andersson MX, Goksor M, Sandelius AS (2007) Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J Biol Chem 282:1170–1174

    PubMed  CAS  Google Scholar 

  • Andrews J, Mudd JB (1985) Phosphatidylglycerol synthesis in pea (Pisum sativum cultivar Laxton ' s Progress no 9) chloroplasts: Pathway and localization. Plant Physiol 79:259–265

    PubMed  CAS  Google Scholar 

  • Andrews J, Ohlrogge JB, Keegstra K (1985) Final step of phosphatidic acid synthesis in pea chloroplasts occurs in the inner envelope membrane. Plant Physiol 78:459–465

    PubMed  CAS  Google Scholar 

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3-fatty-acid desaturation in Arabidopsis. Science 258:1353–1355

    PubMed  CAS  Google Scholar 

  • Aseeva E, Ossenbuhl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC (2004) Complex formation of Vipp1 depends on its alpha-helical PspA-like domain. J Biol Chem 279:35535–35541

    PubMed  CAS  Google Scholar 

  • Awai K, Maréchal E, Block MA, Brun D, Masuda T, Shimada H, Takamiya K, Ohta H, Joyard J (2001) Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid synthesis in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:10960–10965

    PubMed  CAS  Google Scholar 

  • Awai K, Xu CC, Tamot B, Benning C (2006) A phosphatidic acid-binding protein of the chloroplast inner envelope membrane involved in lipid trafficking. Proc Natl Acad Sci USA 103:10817–10822

    PubMed  CAS  Google Scholar 

  • Babiychuk E, Muller F, Eubel H, Braun HP, Frentzen M, Kushnir S (2003) Arabidopsis phosphati-dylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33:899–909

    PubMed  CAS  Google Scholar 

  • Bahl J, Francke B, Monéger R (1976) Lipid composition of envelopes, prolamellar bodies and other plastid membranes in etiolated, green and greening wheat leaves. Planta 129:193–201

    Google Scholar 

  • Bao XM, Focke M, Pollard M, Ohlrogge J (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J 22:39–50

    PubMed  CAS  Google Scholar 

  • Bates PD, Ohlrogge JB, Pollard M (2007) Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J Biol Chem 282: 31206–31216

    PubMed  CAS  Google Scholar 

  • Benning C, Beatty JT, Prince RC, Somerville CR (1993) The sulfolipid sulfoquinovosyldiacylg-lycerol is not required for photosynthetic electron-transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation . Proc Natl Acad Sci USA 90:1561–1565

    PubMed  CAS  Google Scholar 

  • Benson AA, Daniel H, Wiser R (1959) A sulfolipid in plants. Proc Natl Acad Sci USA 45:1582–1587

    PubMed  CAS  Google Scholar 

  • Berglund AH, Nilsson R, Liljenberg C (1999) Permeability of large unilamellar digalactosyldia-cylglycerol vesicles for protons and glucose — influence of α-tocopherol, β-carotene, zeaxanthin and cholesterol. Plant Physiol Biochem 37:179–186

    CAS  Google Scholar 

  • Bessoule JJ, Testet E, Cassagne C (1995) Synthesis of phosphatidylcholine in the chloroplast envelope after import of lysophosphatidylcholine from endoplasmic-reticulum membranes. Eur J Biochem 228:490–497

    PubMed  CAS  Google Scholar 

  • Bin Y, Wakao S, Fan JL, Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45:503–510

    Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983a) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts: 1 Electrophoretic and immunochemical analyses. J Biol Chem 258:13273–13280

    CAS  Google Scholar 

  • Block MA, Dorne AJ, Joyard J, Douce R (1983b) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts: 2 Biochemical characterization. J Biol Chem 258:13281–13286

    CAS  Google Scholar 

  • Böttcher C, Weiler EW (2007) cyclo-Oxylipin-galactolipids in plants: Occurrence and dynamics. Planta 226:629–637

    PubMed  Google Scholar 

  • Bovet L, Müller MO, Siegenthaler PA (2001) Three distinct lipid kinase activities are present in spinach chloroplast envelope membranes: Phosphatidylinosotol phosphorylation is sensitive to wortmannin and not dependent on chloroplast ATP. Biochem Biophys Res Comm 289:269–275

    PubMed  CAS  Google Scholar 

  • Brentel I, Selstam E, Lindblom G (1985) Phase equilibria of mixtures of plant galactolipids. The formation of a bicontinuous phase. Biochim Biophys Acta 812:816–826

    CAS  Google Scholar 

  • Browse J, Warwick N, Somerville CR, Slack CR (1986) Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the “ 16:3 ” plant Arabidopsis thaliana. Biochem J 235:25–31

    PubMed  CAS  Google Scholar 

  • Bruce BD (1998) The role of lipids in plastid protein transport. Plant Mol Biol 38:223–246

    PubMed  CAS  Google Scholar 

  • Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39

    PubMed  CAS  Google Scholar 

  • Carde JP, Joyard J, Douce R (1982) Electron microscopic studies of envelope membranes from spinach chloroplasts. Biol Cell 36c:62–70

    Google Scholar 

  • Chapman DJ, Defelice J, Barber J (1986) Polar lipid-composition of chloroplast thylakoids isolated from leaves grown under different lighting conditions. Photosynth Res 8:257–265

    CAS  Google Scholar 

  • Cline K, Keegstra K (1983) Galactosyltransferases involved in galactolipid biosynthesis are located in the outer membrane of pea ( Pisum sativum cultivar Laxtons Progress No 9) chloroplast envelopes. Plant Physiol 71:366–372

    PubMed  CAS  Google Scholar 

  • Cline K, Andrews J, Mersey B, Newcomb EH, Keegstra K (1981) Separation and characterization of inner and outer envelope membranes of pea ( Pisum sativum cultivar Laxtons Progress 9) chloroplasts. Proc Natl Acad Sci USA 78:3595–3599

    PubMed  CAS  Google Scholar 

  • Conconi A, Miquel M, Browse J, Ryan CA (1996) Intracellular levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol 111:797–803

    PubMed  CAS  Google Scholar 

  • Cranwell PA, Robinson N, Eglinton G (1985) Esterified lipids of the freshwater dinoflagellate Peridinium lomnickii. Lipids 20:645–651

    CAS  Google Scholar 

  • Cremers FFM, Voorhout WF, van der Krift TP, Leunissen-Bijvelt JJM, Verkleij AJ (1988) Visualisation of contact sites between outer and inner envelope membranes in isolated chloroplasts. Biochim Biophys Acta 933:334–340

    CAS  Google Scholar 

  • Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L (2006) Phospholipase Dζ 2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    PubMed  CAS  Google Scholar 

  • Csupor L (1971) Das Phytol in vergilbten Blättern. Planta Med 19:37–40

    CAS  Google Scholar 

  • Dörmann P, Hoffmann S, Balbo I, Benning C (1995) Isolation and characterization of an Arabidopsis mutant deficient in the thylakoid lipid digalactosyl diacylglycerol. Plant Cell 7:1801–1810

    PubMed  Google Scholar 

  • Dörmann P, Balbo I, Benning C (1999) Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 284:2181–2184

    PubMed  Google Scholar 

  • Dorne AJ, Heinz E (1989) Position and pairing of fatty acids in phosphatidylglycerol from pea leaf chloroplasts and mitochondria. Plant Sci 60:39–46

    CAS  Google Scholar 

  • Dorne AJ, Joyard J, Block MA, Douce R (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J Cell Biol 100:1690–1697

    PubMed  CAS  Google Scholar 

  • Dorne AJ, Joyard J, Douce R (1990) Do thylakoids really contain phosphatidylcholine. Proc Natl Acad Sci USA 87:71–74

    PubMed  CAS  Google Scholar 

  • Douce R (1974) Site of biosynthesis of galactolipids in spinach chloroplasts. Science 183:852–853

    PubMed  CAS  Google Scholar 

  • Douce R, Joyard J (1977) Site of synthesis of phosphatidic acid and diacyglycerol in spinach chloroplasts. Biochim Biophys Acta 486:273–285

    PubMed  Google Scholar 

  • Dubacq JP, Tremolieres A (1983) Occurrence and function of phosphatidylglycerol containing ▵ 3- trans -hexadecenoic acid in photosynthetic lamellae . Physiol V ég 21:293–312

    CAS  Google Scholar 

  • Essigmann B, Güler S, Narang RA, Linke D, Benning C (1998) Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 95:1950–1955

    PubMed  CAS  Google Scholar 

  • Falcone DL, Gibson S, Lemieux B, Somerville C (1994) Identification of a gene that complements an Arabidopsis mutant deficient in chloroplast omega-6 desaturase activity. Plant Physiol 106:1453–1459

    PubMed  CAS  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    PubMed  CAS  Google Scholar 

  • Frentzen M, Heinz E, McKeon TA, Stumpf PK (1983) Specificities and selectivities of glycerol-3-phosphate acyltransferase and monoacylglycerol-3-phosphate acyltransferase (EC 23151) from pea ( Pisum sativum ) and spinach ( Spinacia oleracea ) chloroplasts. Eur J Biochem 129:629–636

    PubMed  CAS  Google Scholar 

  • Fritz M, Lokstein H, Hackenberg D, Welti R, Roth M, Zähringer U, Fulda M, Hellmeyer W, Ott C, Wolter FP, Heinz E (2007) Channeling of eukaryotic diacylglycerol into the biosynthesis of plastidial phosphatidylglycerol. J Biol Chem 282:4613–4625

    PubMed  CAS  Google Scholar 

  • Froehlich JE, Benning C, Dörmann P (2001) The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyl-diacylglycerol synthase for DGDG biosynthesis. J Biol Chem 276:31806–31812

    PubMed  CAS  Google Scholar 

  • Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation. Plant J 32:93–103

    PubMed  CAS  Google Scholar 

  • Furukawa-Stoffer TL, Byers SD, Hodges DM, Laroche A, Weselake RJ (1998) Identification of N -ethylmaleimide-sensitive and -insensitive phosphatidate phosphatase activity in microspore-derived cultures of oilseed rape . Plant Sci 131:139–147

    CAS  Google Scholar 

  • Gabrielska J, Gruszecki WI (1996) Zeaxanthin (dihydroxy-β -carotene) but not β-carotene rigidifies lipid membranes: A 1 H NMR study of carotenoid-egg phosphatidylcholine liposomes. Biochim Biophys Acta 1285:167–174

    PubMed  CAS  Google Scholar 

  • Gaigg B, Simbeni R, Hrastnik C, Paltauf F, Daum G (1995) Characterization of a microsomal subfraction associated with mitochondria of the yeast, Saccharomyces cerevisiae Involvement in synthesis and import of phospholipids into mitochondria . Biochim Biophys Acta 1234:214–220

    PubMed  Google Scholar 

  • Gardiner SE, Heinz E, Roughan PG (1984) Rates and products of long-chain fatty-acid synthesis from carbon-14-labeled acetate in chloroplasts isolated from leaves of 16:3 and 18:3 plants. Plant Physiol 74:890–896

    PubMed  CAS  Google Scholar 

  • Gaude N, Tippmann H, Flemetakis E, Katinakis P, Udvardi M, Dörmann P (2004) The galactolipid digalactosyldiacylglycerol accumulates in the peribacteroid membrane of nitrogen-fixing nodules of soybean and Lotus. J Biol Chem 279:34624–34630

    PubMed  CAS  Google Scholar 

  • Gaude N, Bréhélin C, Tischendorf G, Kessler F, Dörmann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729–739

    PubMed  CAS  Google Scholar 

  • Gellerman JL, Anderson WH, Schlenk H (1975) Synthesis and analysis of phytyl and phytenoyl wax esters. Lipids 10:656–661

    PubMed  CAS  Google Scholar 

  • Gibson S, Arondel V, Iba K, Somerville C (1994) Cloning of a temperature-regulated gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant Physiol 106:1615–1621

    PubMed  CAS  Google Scholar 

  • Gounaris K, Mannock DA, Sen A, Brain APR, Williams WP, Quinn PJ (1983) Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions in higher plant chloroplasts. Biochim Biophys Acta 732:229–242

    CAS  Google Scholar 

  • Gruszecki WI, Sielewiesiuk J (1991) Galactolipid multibilayers modified with xanthophylls — orientational and diffractometric studies. Biochim Biophys Acta 1069:21–26

    PubMed  CAS  Google Scholar 

  • Gruszecki WI, Strzalka K (1991) Does the xanthophyll cycle take part in the regulation of fluidity of the thylakoid membrane. Biochim Biophys Acta 1060:310–314

    CAS  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G, Benning C (1996) A null mutant of Synechococcus sp PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271:7501–7507

    PubMed  Google Scholar 

  • Hagio M, Sakurai I, Sato S, Kato T, Tabata S, Wada H (2002) Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 43:1456–1464

    PubMed  CAS  Google Scholar 

  • Hanson MR, Kohler RH (2001) GFP imaging: methodology and application to investigatecellular comparmentation in plants. J Exp Bot 52:529–539

    PubMed  CAS  Google Scholar 

  • Härtel H, Lokstein H, Dörmann P, Grimm B, Benning C (1997) Changes in the composition of the photosynthetic apparatus in the galactolipid-deficient dgd1 mutant of Arabidopsis thaliana. Plant Physiol 115:1175–1184

    PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2000) DGD1-independent biosynthesis of extraplastidic galac-tolipids after phosphate deprivation in Arabidopsis. Proc Nat Acad Sci USA 97:10649–10654

    PubMed  Google Scholar 

  • Härtel H, Dörmann P, Benning C (2001) Galactolipids not associated with the photosynthetic apparatus in phosphate-deprived plants. J Photochem Photobiol 61:46–51

    Google Scholar 

  • Hayashi H, De Bellis L, Hayashi Y, Nito K, Kato A, Hayashi M, Hara-Nishimura I, Nishimura M (2002) Molecular characterization of an Arabidopsis acyl-coenzyme A synthetase localized on glyoxysomal membranes. Plant Physiol 130:2019–2026

    PubMed  CAS  Google Scholar 

  • Heemskerk JWM, Storz T, Schmidt RR, Heinz E (1990) Biosynthesis of digalactosyldiacylglycerol in plastids from 16:3 and 18:3 plants. Plant Physiol 93:1286–1294

    PubMed  CAS  Google Scholar 

  • Heilmann I, Mekhedov S, King B, Browse J, Shanklin J (2004) Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol Delta 7-desaturase gene FAD5 , and effects of plas-tidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol 136:4237–4245

    PubMed  CAS  Google Scholar 

  • Heinz E (1967) Acylgalaktosyldiglycerid aus Blatthomogenaten. Biochim Biophys Acta 144:321–332

    PubMed  CAS  Google Scholar 

  • Heinz E, Roughan P (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72:273–279

    PubMed  CAS  Google Scholar 

  • Heinz E, Tulloch AP (1969) Reinvestigation of the structure of acyl galactosyl diglyceride from spinach leaves. Hoppe Seylers Z Physiol Chem 350:493–498

    PubMed  CAS  Google Scholar 

  • Heinz E, Bertrams M, Joyard J, Douce R (1978) Demonstration of an acyltransferase activity in chloroplast envelopes. Z Pflanzenphysiol 87:325–331

    CAS  Google Scholar 

  • Hellgren LI, Sandelius AS (2001) Age dependent variation in membrane lipid synthesis in leaves of garden pea ( Pisum sativum L). J Exp Bot 52:2275–2282

    PubMed  CAS  Google Scholar 

  • Hellgren LI, Carlsson AS, Sellden G, Sandelius S (1995) In situ leaf lipid metabolism in garden pea ( Pisum sativum L) exposed to moderately enhanced levels of ozone. J Exp Bot 46: 221–230

    CAS  Google Scholar 

  • Helmsing PJ (1967) Hydrolysis of galactolipids by enzymes in spinach leaves. Biochim Biophys Acta 144:470–472

    PubMed  CAS  Google Scholar 

  • Henrissat B, Coutinho PM, Davies GJ (2001) A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol Biol 47:55–72

    PubMed  CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Hasegawa K, Shigemori H (2003) Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett 44:5553–5556

    CAS  Google Scholar 

  • Hisamatsu Y, Goto N, Sekiguchi M, Hasegawa K, Shigemori H (2005) Oxylipins arabidopsides C and D from Arabidopsis thaliana. J Nat Prod 68:600–603

    PubMed  CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Booth JR, Kinney AJ, Stecca KL, Yadav NS (1994) Cloning of a higher-plant plastid ω -6 fatty-acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641

    PubMed  CAS  Google Scholar 

  • Hugueney P, Bouvier F, Badillo A, Dharlingue A, Kuntz M, Camara B (1995) Identification of a plastid protein involved in vesicle fusion and/or membrane-protein translocation. Proc Natl Acad Sci USA 92:5630–5634

    PubMed  CAS  Google Scholar 

  • Hyun Y, Choi S, Hwang HJ, Yu J, Nam SJ, Ko J, Park JY, Seo YS, Kim EY, Ryu SB, Kim WT, Lee YH, Kang H, Lee I (2008) Cooperation and functional diversification of two closely related galactolipase genes for jasmonate biosynthesis. Dev Cell 14:183–192

    PubMed  CAS  Google Scholar 

  • Iba K, Gibson S, Nishiuchi T, Fuse T, Nishimura M, Arondel V, Hugly S, Somerville C (1993) A gene encoding a chloroplast omega-3-fatty-acid desaturase complements alterations in fatty-acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana J Biol Chem 268:24099–24105

    PubMed  CAS  Google Scholar 

  • Ischebeck T, Zbierzak AM, Kanwischer M, Dörmann P (2006) A salvage pathway for phytol metabolism in Arabidopsis. J Biol Chem 281:2470–2477

    PubMed  CAS  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    PubMed  CAS  Google Scholar 

  • Jarvis P, Dörmann P, Peto CA, Lutes J, Benning C, Chory J (2000) Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc Natl Acad Sci USA 97:8175–8179

    PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 25 Å resolution. Nature 411:909–917

    PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Bligny R, Joyard J, Block MA (2003) Transient increase of phosphatidyl-choline in plant cells in response to phosphate deprivation. FEBS Lett 544:63–68

    PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Baldan B, Bligny R, Joyard J, Block MA (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    PubMed  CAS  Google Scholar 

  • Jouhet J, Maréchal E, Block MA (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog Lipid Res 46:37–55

    PubMed  CAS  Google Scholar 

  • Kaneko Y, Keegstra K (1996) Plastid biogenesis in embryonic pea leaf cells during early germination. Protoplasma 195:59–67

    Google Scholar 

  • Kelly AA, Dörmann P (2002) DGD2 , an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate-limiting conditions. J Biol Chem 277:1166–1173

    PubMed  CAS  Google Scholar 

  • Kelly AA, Froehlich JE, Dörmann P (2003) Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694–2706

    PubMed  CAS  Google Scholar 

  • Kim HU, Huang AHC (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134:1206–1216

    PubMed  CAS  Google Scholar 

  • Kjellberg JM, Trimborn M, Andersson M, Sandelius AS (2000) Acyl-CoA dependent acylation of phospholipids in the chloroplast envelope. Biochim Biophys Acta 1485:100–110

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Kondo M, Fukuda H, Nishimura M, Ohta H (2007) Galactolipid synthesis in chloroplast inner envelope is essential for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc Natl Acad Sci USA 104:17216–17221

    PubMed  CAS  Google Scholar 

  • Kocsis MG, Weselake RJ, Eng JA, Furukawa-Stoffer TL, Pomeroy MK (1996) Phosphatidate phosphatase from developing seeds and microspore-derived cultures of Brassica napus. Phytochemistry 41:353–363

    CAS  Google Scholar 

  • Königs B, Heinz E (1974) Investigation of some enzymatic activities contributing to the biosynthesis of galactolipid precursors in Vicia faba. Planta 118:159–169

    Google Scholar 

  • Koo AJK, Ohlrogge JB, Pollard M (2004) On the export of fatty acids from the chloroplast. J Biol Chem 279:16101–16110

    PubMed  CAS  Google Scholar 

  • Koo AJK, Fulda M, Browse J, Ohlrogge JB (2005) Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J 44:620–632

    PubMed  CAS  Google Scholar 

  • Kourtchenko O, Andersson MX, Hamberg M, Brunnström A, Göbel C, McPhail KL, Gerwick WH, Feussner I, Ellerström M (2007) Oxo-phytodienoic acid-containing galactolipids in Arabidopsis : jasmonate signaling dependence . Plant Physiol 145:1658–1669

    PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1 , a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation.Proc Natl Acad Sci USA 98:4238–4242

    PubMed  CAS  Google Scholar 

  • Kunst L, Browse J, Somerville C (1988) Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity . Proc Natl Acad Sci USA 85:4143–4147

    PubMed  CAS  Google Scholar 

  • Kunst L, Browse J, Somerville C (1989) Altered chloroplast structure and function in a mutant of Arabidopsis deficient in plastid glycerol-3-phosphate acyltransferase activity. Plant Physiol 90:846–853

    PubMed  CAS  Google Scholar 

  • Kwok EY, Hanson MR (2003) Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J 35:16–26

    PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004) Stromules and the dynamic nature of plastid morphology. J Microsc 214:124–137

    PubMed  CAS  Google Scholar 

  • Li HM, Kaneko Y, Keegstra K (1994) Molecular-cloning of a chloroplastic protein associated with both the envelope and thylakoid membranes. Plant Mol Biol 25:619–632

    PubMed  CAS  Google Scholar 

  • Li MY, Welti R, Wang XM (2006a) Quantitative profiling of Arabidopsis. polar glycerolipids in response to phosphorus starvationRoles of phospholipases Dζ1 and Dζ2 in phosphatidylcho-line hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    CAS  Google Scholar 

  • Li MY, Qin CB, Welti R, Wang XM (2006b) Double knockouts of phospholipases D zeta 1 and D zeta 2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning . Plant Physiol 140:761–770

    CAS  Google Scholar 

  • Liu C, Willmund F, Golecki JR, Cacace S, Heß B, Markert C, Schroda M (2007) The chloroplast HSP70B-CDJ2-CGE1 chaperones catalyse assembly and disassembly of VIPP1 oligomers in Chlamydomonas. Plant J50:265277

    PubMed  CAS  Google Scholar 

  • Lohmann A, Schöttler MA, Bréhélin C, Kessler F, Bock R, Cahoon EB, Dörmann P (2006) Deficiency in phylloquinone (vitamin K 1 ) methylation affects prenyl quinone distribution, photosystem I abundance and anthocyanin accumulation in the Arabidopsis AtmenG mutant. J Biol Chem 281:40461–40472

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 30 Å resolution structure of photosystem II. Nature 438:1040–1044

    PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2007) Lipids in photosystem II: Interactions with protein and cofactors. Biochim Biophys Acta 1767:509–519

    PubMed  CAS  Google Scholar 

  • Lu B, Xu C, Awai K, Jones AD, Benning C (2007) A small ATPase protein of Arabidopsis , TGD3, involved in chloroplast lipid import . J Biol Chem 282:35945–35953

    PubMed  CAS  Google Scholar 

  • Lykidis A (2007) Comparative genomics and evolution of eukaryotic phospholipid biosynthesis. Prog Lipid Res 46:171–199

    PubMed  CAS  Google Scholar 

  • Ma XY, Browse J (2006) Altered rates of protein transport in Arabidopsis mutants deficient in chloroplast membrane unsaturation. Phytochemistry 67:1629–1636

    PubMed  CAS  Google Scholar 

  • Mackender R, Leech R (1974) The galactolipid, phospholipid and fatty acid composition of the chloroplast envelope membrane of Vicia faba. L. Plant Physiol 53:496–502

    PubMed  CAS  Google Scholar 

  • Mekhedov S, de Ilarduya OM, Ohlrogge J (2000) Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol 122:389–401

    PubMed  CAS  Google Scholar 

  • Minnikin DE, Abdolrahimzadeh H, Baddiley J (1974) Replacement of acidic phospholipids by acidic glycolipids in Pseudomonas diminuta. Nature 249:268–269

    PubMed  CAS  Google Scholar 

  • Miquel M, Browse J (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis: Biochemical and genetic characterization of a plant oleoylphosphatidylcholine desaturase. J Biol Chem 267:1502–1509

    PubMed  CAS  Google Scholar 

  • Miquel M, Block MA, Joyard J, Dorne AJ, Dubacq JP, Kader JC, Douce R (1988) Protein-mediated transfer of phosphatidylcholine from liposomes to spinach chloroplast envelope membranes. Biochim Biophys Acta 937:219–228

    Google Scholar 

  • Mongrand S, Bessoule JJ, Cassagne C (1997) A re-examination in vivo of the phosphatidylcholine-galactolipid metabolic relationship during plant lipid biosynthesis. Biochem J 327:853–858

    PubMed  CAS  Google Scholar 

  • Mongrand S, Bessoule J-J, Cabantous F, Cassagne C (1998) The C16:3/C18:3 fatty acid balance in photosynthetic tissues from 468 plant species. Phytochemistry 49:1049–1064

    CAS  Google Scholar 

  • Mongrand S, Cassagne C, Bessoule JJ (2000) Import of lyso-phosphatidylcholine into chloro-plasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122:845–852

    PubMed  CAS  Google Scholar 

  • Moreau P, Bessoule JJ, Mongrand S, Testet E, Vincent P, Cassagne C (1998) Lipid trafficking in plant cells. Prog Lipid Res 37:371–391

    PubMed  CAS  Google Scholar 

  • Morré DJ, Morré JT, Morré SR, Sundqvist C, Sandelius AS (1991a) Chloroplast biogenesis — cell-free transfer of envelope monogalactosylglycerides to thylakoids. Biochim Biophys Acta 1070:437–445

    Google Scholar 

  • Morré DJ, Selldén G, Sundqvist C, Sandelius AS (1991b) Stromal low-temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97:1558–1564

    Google Scholar 

  • Mueller-Roeber B, Pical C (2002) Inositol phospholipid metabolism in Arabidopsis.Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phosphol-ipase C. Plant Physiol 130:22–46

    PubMed  CAS  Google Scholar 

  • Mühlethaler K, Frey-Wyssling A (1959) The development and structure of proplastids. J Biophys Biochem Cytol 6:507–512

    Google Scholar 

  • Mulichak AM, Theisen MJ, Essigmann B, Benning C, Garavito RM (1999) Crystal structure of SQD1, an enzyme involved in the biosynthesis of the plant sulfolipid headgroup donor UDP-sulfoquinovose. Proc Natl Acad Sci USA 96:13097–13102

    PubMed  CAS  Google Scholar 

  • Muller F, Frentzen M (2001) Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 509:298–302

    PubMed  CAS  Google Scholar 

  • Müller MO, Meylan-Bettex M, Eckstein F, Martinoia E, Siegenthaler PA, Bovet L (2000) Lipid phosphorylation in chloroplast envelopes– Evidence for galactolipid CTP-dependent kinase activities. J Biol Chem 275:19475–19481

    PubMed  Google Scholar 

  • Munné-Bosch S, Alegre L (2002) The function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Google Scholar 

  • Murata N, Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) Lipids: Structure and function, vol 4. Academic, New York, pp 315–347

    Google Scholar 

  • Nakajyo H, Hisamatsu Y, Sekiguchi M, Goto N, Hasegawa K, Shigemori H (2006) Arabidopside F, a new oxylipin from Arabidopsis thaliana. Heterocycles 69:295–301

    CAS  Google Scholar 

  • Nakamura Y, Awai K, Masuda T, Yoshioka Y, Takamiya K, Ohta H (2005) A novel phosphatidyl-choline-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J Biol Chem 280:7469–7476

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Tsuchiya M, Ohta H (2007) Plastidic phosphatidic acid phosphatases identified in a distinct subfamily of lipid phosphate phosphatases with prokaryotic origin. J Biol Chem 282:29013–29021

    PubMed  CAS  Google Scholar 

  • Neufeld EF, Hall CW (1964) Formation of galactolipids by chloroplasts. Biochem Biophys Res Commun 14:503–508

    PubMed  CAS  Google Scholar 

  • Ohashi T, Ito Y, Okada M, Sakagami Y (2005) Isolation and stomatal opening activity of two oxylipins from Ipomoea tricolor. Bioorg Med Chem Lett 15:263–265

    PubMed  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    PubMed  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid-synthesis . Plant Cell 6:147–158

    PubMed  CAS  Google Scholar 

  • Oursel A, Escoffier A, Kader JC, Dubacq JP, Trémolières A (1987) Last step in the cooperative pathway for galactolipid synthesis in spinach leaves: Formation of monogalactosyldiacylglycerol with C 18 polyunsaturated acyl groups at both carbon atoms of the glycerol. FEBS Lett 219:393–399

    CAS  Google Scholar 

  • Park JM, Cho JH, Kang SG, Jang HJ, Pih KT, Piao HL, Cho MJ, Hwang I (1998) A dynamin-like protein in Arabidopsis thaliana. is involved in biogenesis of thylakoid membranes . EMBO J 17:859–867

    PubMed  CAS  Google Scholar 

  • Patterson GW, Hugly S, Harrison D (1993) Sterols and phytyl esters of Arabidopsis thaliana under normal and chilling temperatures. Phytochemistry 33:1381–1383

    CAS  Google Scholar 

  • Pichler H, Gaigg B, Hrastnik C, Achleitner G, Kohlwein SD, Zellnig G, Perktold A, Daum G (2001) A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur J Biochem 268:2351–2361

    PubMed  CAS  Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schifelbein J (1991) A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97:1087–1093

    PubMed  CAS  Google Scholar 

  • Pollard M, Ohlrogge J (1999) Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labelling. Plant Physiol 121:1217–1226

    PubMed  CAS  Google Scholar 

  • Räntfors M, Evertsson I, Kjellberg JM, Sandelius AS (2000) Intraplastidial lipid trafficking: Regulation of galactolipid release from isolated chloroplast envelope. Physiol Plant 110:262–270

    Google Scholar 

  • Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196

    PubMed  CAS  Google Scholar 

  • Roughan PG (1970) Turnover of the glycerolipids of pumpkin leaves. The importance of phos-phatidylcholine. Biochem J 117:1–8

    PubMed  CAS  Google Scholar 

  • Roughan PG (1985) Phosphatidylglycerol and chilling sensitivity in plants. Plant Physiol 77:740–746

    PubMed  CAS  Google Scholar 

  • Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu Rev Plant Physiol 33:97–132

    CAS  Google Scholar 

  • Routaboul J-M, Fischer SF, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol 124:1697–1705

    PubMed  CAS  Google Scholar 

  • Ryberg H, Ryberg M, Sundqvist C (1993) Plastid ultrastructure and development. In: Ryberg M, Sundqvist C (eds) Pigment–protein complexes in plastids. Academic, London

    Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990) Pathway for the synthesis of triacylglycerols from monoga-lactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94:773–780

    PubMed  CAS  Google Scholar 

  • Sánchez-Fernández R, Emyr Davies TG, Coleman JOD, Rea PA (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276:30231–30244

    PubMed  Google Scholar 

  • Sastry PS, Kates M (1964) Hydrolysis of monogalactosyl and digalactosyl diglycerides by specific enzymes in runner bean leaves. Plant Physiol 3:1280–1287

    CAS  Google Scholar 

  • Schlötz F (1975) Vergrößerung der Kontaktfläche zwischen Chloroplasten und ihrer cytoplas-matischen Umgebung durch tubul ä re Ausst ü lpungen der Plastidenh ü lle. Planta 124:277–285

    Google Scholar 

  • Schmidt H, Heinz E (1990a) Desaturation of oleoyl groups in envelope membranes from spinach chloroplasts. Proc Natl Acad Sci USA 87:9477–9480

    CAS  Google Scholar 

  • Schmidt H, Heinz E (1990b) Involvement of ferredoxin in desaturation of lipid-bound oleate in chloroplasts. Plant Physiol 94:214–220

    CAS  Google Scholar 

  • Schmidt H, Heinz E (1993) Direct desaturation of intact galactolipids by a desaturase solubilized from spinach ( Spinacia oleracea) chloroplast envelopes. Biochem J 289:777–782

    PubMed  CAS  Google Scholar 

  • Schnurr JA, Shockey JM, de Boer GJ, Browse JA (2002) Fatty acid export from the chloroplast Molecular characterization of a major plastidial acyl-coenzyme A synthetase from Arabidopsis. Plant Physiol 129:1700–1709

    PubMed  CAS  Google Scholar 

  • Selstam E, Sandelius AS (1984) A comparison between prolamellar bodies and prothylakoid membranes of etioplasts of dark-grown wheat ( Triticum aestivum cultivar StarkeII) concerning lipid and polypeptide composition. Plant Physiol 76:1036–1040

    PubMed  CAS  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme A syn-thetase genes that participate in fatty acid and glycerolipid metabolism Plant Physiol 129:1710–1722

    PubMed  CAS  Google Scholar 

  • Siegenthaler PA, Muller MO, Bovet L (1997) Evidence for lipid kinase activities in spinach chloroplast envelope membranes.FEBS Lett 416:57–60

    PubMed  CAS  Google Scholar 

  • Slack CR, Roughan PG, Balasingham N (1977) Labelling studies in vivo on the metabolism of the acyl and glycerol moieties of the glycerolipids in the developing maize leaf. Biochem J 162:289–296

    PubMed  CAS  Google Scholar 

  • Sperling P, Linscheid M, Stocker S, Muhlbach HP, Heinz E (1993) In-vivo desaturation of cis-delta-9-monounsaturated to cis -delta-9,12-diunsaturated alkenylether glycerolipids. J Biol Chem 268:26935–26940

    PubMed  CAS  Google Scholar 

  • Staehelin LA (1997) The plant ER: A dynamic organelle composed of a large number of discrete functional domains. Plant J11:1151–1165

    PubMed  CAS  Google Scholar 

  • Stelmach BA, Muller A, Hennig P, Gebhardt S, Schubert-Zsilavecz M, Weiler EW (2001) A novel class of oxylipins, sn1- O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl diglyceride, from Arabidopsis thaliana. J Biol Chem 276:12832–12838

    PubMed  CAS  Google Scholar 

  • Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51:895–911

    PubMed  CAS  Google Scholar 

  • Szilágyi A, Selstam E, Akerlund HE (2008) Laurdan fluorescence spectroscopy in the thylakoid bilayer: The effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment. Biochim Biophys Acta 1778:348–355

    PubMed  Google Scholar 

  • van Besouw A, Wintermans JF (1978) Galactolipid formation in chloroplast envelopes. I. Evidence for two mechanisms in galactosylation. Biochim Biophys Acta 529:44–53

    PubMed  Google Scholar 

  • Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves . Plant Physiol 136:3594–3604

    PubMed  CAS  Google Scholar 

  • Westphal S, Heins L, Soll J, Vothknecht UC (2001a) Vipp1 deletion mutant of Synechocystis : A connection between bacterial phage shock and thylakoid biogenesis? Proc Natl Acad Sci USA98:4243–4248

    CAS  Google Scholar 

  • Westphal S, Soll J, Vothknecht UC (2001b) A vesicle transport system inside chloroplasts. FEBS Lett 506:257–261

    CAS  Google Scholar 

  • Whatley JM, McLean B, Juniper BE (1991) Continuity of chloroplast and endoplasmic reticulum membranes in Phaseolus vulgaris. New Phytol 117:209–217

    Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Brehelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234

    PubMed  CAS  Google Scholar 

  • Vothknecht UC, Westhoff P (2001) Biogenesis and origin of thylakoid membranes. Biochim Biophys Acta 1541:91–101

    PubMed  CAS  Google Scholar 

  • Williams JP, Imperial V, Khan MU, Hodson JN (2000) The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L leaves. Biochem J 349:127–133

    PubMed  CAS  Google Scholar 

  • Wintermans JFGM, Van Besouw A, Bogemann G (1981) Galactolipid formation in chloroplast envelopes: 2 Isolation-induced changes in galactolipid composition of envelopes. Biochim Biophys Acta 663:99–107

    PubMed  CAS  Google Scholar 

  • Wisniewska A, Subczynski WK (1998) Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim Biophys Acta 1368:235–246

    PubMed  CAS  Google Scholar 

  • Wooding FBP, Northcote DH (1965) Association of the endoplasmic reticulum and the plastids in Acer and Pinus. Amer J Bot 52:526–531

    Google Scholar 

  • Xu C, Härtel H, Wada H, Hagio M, Yu B, Eakin C, Benning C (2002) The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity . Plant Physiol 129:594–604

    PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J22:2370–2379

    PubMed  CAS  Google Scholar 

  • Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17:3094–3110

    PubMed  CAS  Google Scholar 

  • Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltrans-ferase. Plant J 47:296–309

    PubMed  CAS  Google Scholar 

  • Yadav NS, Wierzbicki A, Aegerter M, Caster CS, Perezgrau L, Kinney AJ, Hitz WD, Booth JR, Schweiger B, Stecca KL, Allen SM, Blackwell M, Reiter RS, Carlson TJ, Russell SH, Feldmann KA, Pierce J, Browse J (1993) Cloning of higher-plant omega-3-fatty-acid desaturases. Plant Physiol 103:467–476

    PubMed  CAS  Google Scholar 

  • Yagi T, Benson AA (1962) Plant sulfolipid. V. Lysosulfolipid formataion. Biochim Biophys Acta 57:601–603

    PubMed  CAS  Google Scholar 

  • Yu B, Xu CC, Benning C (2002) Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc Natl Acad Sci USA 99:5732–5737

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andersson, M.X., Dörmann, P. (2009). Chloroplast Membrane Lipid Biosynthesis and Transport. In: Sandelius, A.S., Aronsson, H. (eds) The Chloroplast. Plant Cell Monographs, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68696-5_4

Download citation

Publish with us

Policies and ethics