Skip to main content

Fiber Bragg Gratings Evanescent Wave Sensors: A View Back and Recent Advancements

  • Chapter
Sensors

Part of the book series: Lecture Notes Electrical Engineering ((LNEE,volume 21))

Abstract

Among the large number of fiber optic sensors configurations, Fiber Bragg Grating (FBG) based sensors, more than any other particular sensor type, have become widely known and popular within and out the photonics community and seen a rise in their utilization and commercial growth. The most relevant milestones of their technological evolution in thirty years from the discovery of Kenneth Hill in 1978 are overviewed. It also reviews the advances in the area of FBGs evanescent wave sensors as valuable technological platforms for chemical and biological applications. Emphasis will be placed on principles of operation, technological developments and overall performances discussing perspectives and challenges that lie ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Culshaw and J. Dakin (1988) “Optical Fiber Sensors: Principle and Components”, Artech House inc., Norwood.

    Google Scholar 

  2. E. Udd (1991) “Fiber Optic Sensors: An Introduction for Engineerings and Scientists”, John Wiley and Sons, New York.

    Google Scholar 

  3. B. Culshaw and J. Dakin (1997) “Optical Fiber Sensors: Applications, Analysis, and Future Trends”, Artech House inc., Norwood.

    Google Scholar 

  4. B. Culshaw and J. Dakin (1996) “Optical Fiber Sensors: Components and Subsystems”, Vol. 3, Artech House inc., Norwood.

    Google Scholar 

  5. E. Udd (1995) “Fiber Optic Smart Structures”, John Wiley and Sons, New York.

    Google Scholar 

  6. R. M. Measures (2001) “Structural Monitoring with Fiber Optic Technology”, Academic Press, London.

    Google Scholar 

  7. K. O. Hill, Y. Frujii, D. C. Johnson, and B. S. Kawasaky (1978) “Photosensitivity in Optical Fiber Waveguides: Applications to Reflection Filter Fabrication”, Appl. Phys. Lett. Vol. 32, pp. 647–649.

    Article  Google Scholar 

  8. G. Meltz, W. W. Morey, and W. H. Glam (1989) “Formation of Bragg Grating in Optical Fibers by a Transverse Holographic Method”, Opt. Lett. Vol. 14, pp. 823–825.

    Google Scholar 

  9. D. Lam, and B. Garside (1981) “Characterization of Single Mode Optical Fibers”, A pp. Opt. Vol. 20, pp. 440–445.

    Google Scholar 

  10. K. O. Hill and G. Meltz (1997) “Fiber Bragg Grating Technology Fundamentals and Overview”, J. Lightwave Technol., Vol. 15, pp.1263–1276.

    Article  Google Scholar 

  11. A. Yariv (1973) “Coupled-Mode Theory for Guided-Wave Optics”, IEEE J. Quantum Electron., Vol. QE-9, pp. 919–933.

    Article  Google Scholar 

  12. T. Erdogan (1997) “Fiber Grating Spectra”, J. Lightwave Technol., Vol. 15, No. 8, pp. 1277–1294.

    Article  Google Scholar 

  13. P. J. Lemaire, R. M. Atkins, V. Mizrahi, K. L. Walker, K. S. Kranz, and W. A. Reed (1993) “High Pressure H$_2$ Loading as a Technique for Achieving Ultrahigh UV Photosensitivity and Thermal Sensitivity in GeO2 Doped Optical Fibers”, Electron. Lett., Vol. 29, pp. 1191–1193.

    Article  Google Scholar 

  14. K. O. Hill et al. (1993) “Bragg Gratings Fabricated in Monomode Photosensitive Optical Fibers by UV Exposure Through a Phase Mask”, Appl. Phys. Lett., Vol. 62, pp. 1035–1037.

    Article  Google Scholar 

  15. A. Othonos, et al. (1995) “Novel and Improved Methods of Writing Bragg gratings with Phase Mask”, EEE Phot. Techn. Lett., Vol. 7, pp. 1183–1185.

    Google Scholar 

  16. B. Malo, S. Theriault, D. C. Johnson, F. Bilodeau, J. Albert, and K. O. Hill (1995) “Apodised In-Fiber Bragg Grating Reflectors Photoimprinted using a Phase Mask,” Electron. Lett., Vol. 31, pp. 223–225.

    Article  Google Scholar 

  17. J. E. Sipe, L. Poladian, and C. M. de Sterke (1994) “Propagation Through Nonuniform Grating Structures”, J. Opt. Soc. Amer. A, Vol. 11, pp. 1307–1320.

    Google Scholar 

  18. T. Erdogan and J. E. Sipe (1996) “Tilted Fiber Phase Gratings”, J. Opt. Soc. Amer. A, Vol. 13, pp. 296–313.

    Google Scholar 

  19. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe (1996) “Long-Period Fiber Gratings as Band-Rejection Filters”, J. Lightwave Technol., Vol. 14, pp. 58–65.

    Article  Google Scholar 

  20. W. H. Loh and R. I. Laming (1995) “1.55 $μm Phase-Shifted Distributed Feedback Fiber Laser,” Electron. Lett., Vol. 31, pp. 1440–1442.

    Article  Google Scholar 

  21. B. J. Eggleton, P. A. Krug, L. Poladian, and F. Ouellette (1994) “Long Periodic Superstructure Bragg Gratings in Optical Fibers”, Electron. Lett., Vol. 30, pp. 1620–1622.

    Article  Google Scholar 

  22. T. Erdogan (1997) “Cladding-Mode Resonances in Short and Long Period Fiber Grating Filters”, J. Opt. Soc. Amer. A, Vol. 14, No. 8, Aug.

    Google Scholar 

  23. S. M. Melle, K. Liu, and R. Measures (1992) “A Passive Wavelength Demodulation System for Guided-Wave Bragg Grating Sensors”, IEEE Phot. Technol. Lett., Vol. 4, No.5, pp. 516–518.

    Article  Google Scholar 

  24. P. St. J. Russel and J. L. Archambault (1997) “Fiber Gratings” in Optical Fiber Sensors, B. Culshaw and J. Dakin Eds., Artech House, pp. 9–67.

    Google Scholar 

  25. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam and E. J. Friebele (1997) “Fiber Grating Sensors”, J. Lightwave Technol., Vol. 15, pp 1442–1462.

    Google Scholar 

  26. A. Othonos and K. Kalli (1999) ” “Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing”. Artech House, Boston.

    Google Scholar 

  27. R. Kashyap (1999) “Fiber Bragg Gratings” Academic Press, San Diego.

    Google Scholar 

  28. A. Mendez (2007) “Fiber Bragg grating Sensors: A Market Overview”, Proceedings Vol. 6619 Third European Workshop on Optical Fibre Sensors, Antonello Cutolo; Brian Culshaw; José Miguel López-Higuera, Editors, 661905.

    Google Scholar 

  29. P. N. Prasad (2003) “Introduction to Biophotonics”, John Wiley & Sons, Hoboken, New Jersey.

    Google Scholar 

  30. F. Baldini, A. N. Chester, J. Homola, and S. Martellucci, Eds. (2004) “Optical Chemical Sensors”, NATO Science Series Vol. 224.

    Google Scholar 

  31. G. Meltz, S. J. Hewlett, and J. D. Love (1996) “Fiber Grating Evanescent-Wave Sensors”, Proceedings of SPIE Vol. 2836 Chemical, Biochemical, and Environmental Fiber Sensors VIII, pp. 342–350.

    Google Scholar 

  32. S. M. Tseng and Ch. L. Chen (1992) “Side-Polished Fibers”, Appl. Opt., Vol. 31, pp. 3438–3447.

    Article  Google Scholar 

  33. K. Usbeck, W. Ecke, A. Andreev, V. Hagemann, R. Mueller, and R. Willsch (1998) “Distributed Optochemical Sensor Network Using Evanescent Field Interaction in Fiber Bragg Gratings”, Proceedings of 1st European Workshop on Optical Fibre Sensors, 08–10 July 1998, Peebles, Scotland, SPIE Vol. 3483, pp. 90–94.

    Google Scholar 

  34. K. Schröder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev (2001) “A Fibre Bragg Grating Refractometer”, Meas. Sci. Technol., Vol. 12, pp. 757–764.

    Article  Google Scholar 

  35. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, and A. Cutolo (2005) “Cladding Mode Reorganization in High-Refractive Index-Coated Long-Period Gratings: Effects on the Refractive-index Sensitivity”, Opt. Lett., Vol. 30, No. 19, October 1, pp. 2536–2538.

    Article  Google Scholar 

  36. S. W. James, N. Rees, R. P. Tatam, and G. J. Ashwel (2002) “Optical Fiber Long Period Gratings With Langmuir-Blodgett Thin Film Overlays”, Opt. Lett., 9, pp. 686–688.

    Google Scholar 

  37. I. Del Villar, I. Matías, F. Arregui, and P. Lalanne (2005) .“Optimization of Sensitivity in Long Period Fiber Gratings with Overlay Deposition”, Opt. Express, Vol. 13, pp. 56–69.

    Article  Google Scholar 

  38. A. Cusano, A. Iadicicco, P. Pilla, L. Contessa, S. Campopiano, A. Cutolo, and M. Giordano (2006) “Mode Transition in High Refractive Index Coated Long Period Gratings”, Opt. Express, Vol. 14, pp. 19–34.

    Article  Google Scholar 

  39. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta (2000) “Bragg gratings in multimode and Few-Mode Optical Fibers”, J. Lightwave Technol., Vol. 18, No. 2, pp. 230–235.

    Article  Google Scholar 

  40. J. Homola, S. S. Yee, and G. Gauglitz (1999) “Surface Plasmon Resonance Sensors: Review”, Sens. and Actuators B, Vol. 54, pp. 3–15.

    Article  Google Scholar 

  41. J. $\breveC$tyroký, F. Abdelmalek, W. Ecke, and K. Usbeck (1999) “Modelling of the Surface Plasmon Resonance Waveguide Sensor with Bragg Grating”, Opt. Quan. Electron., Vol. 31, pp. 927–941.

    Article  Google Scholar 

  42. J. Čtyroký, W. Ecke, K. Schroeder, and R. Slavík (2000) “Separation of Refractive Index and Temperature Measurements Using Surface Plasmon-Coupled Fiber Grating” Proceedings of SPIE Vol. 4185 “OFS2000”, Eds. A.G. Mignani and H.C. Lefevre, pp. 322–325, Venice.

    Google Scholar 

  43. R. Willsch, W. Ecke, G. Schwotzer, H. Bartelt (2007) “Nanostructure-Based Optical Fibre Sensor Systems and Examples of their Application “Proceedings of SPIE Volume: 6585 Francesco Baldini, Jiri Homola, Robert A. Lieberman, Miroslav Miler Eds.

    Google Scholar 

  44. K. Zhou, X. Chen, L. Zhang, and I. Bennion (2004) “High-Sensitivity Optical Chemsonsor Based on Etched D-Fibre Bragg Gratings”, Electron. Lett. Vol. (4), pp. 232–234.

    Article  Google Scholar 

  45. M. A. Jensen and R. H. Selfridge (1992) “Analysis of Etching Induced Birefringence Changes in Elliptic Core Fibers”, Appl. Opt, Vol. 31, pp. 211–216.

    Google Scholar 

  46. K. H. Smith, B. L. Ipson, T. L. Lowder, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz (2006) “Surface-Relief Fiber Bragg Gratings for Sensing Applications” Appl. Opt. Vol. 45, pp. 1669.

    Article  Google Scholar 

  47. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge (2007) “Volatile Organic Compound Sensing Using a Surface Relief D-Shaped Fiber Bragg Grating and a Polydimethylsiloxane Layer” Opt. Lett. Vol. 32, No. 17, pp. 2523–2525.

    Article  Google Scholar 

  48. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, and G. Edwall, (1998) “Fiber Optical Bragg Grating Refractometer”, Fiber and Integrated Optics, Vol. 17, pp. 51–62.

    Google Scholar 

  49. A. Iadicicco, A. Cusano, G.V. Persiano, A. Cutolo, R. Bernini and M. Giordano (2003) “Re-Fractive Index Measurements by Fiber Bragg Grating Sensor” Proceedings of IEEE Sensors Conference, Vol. 1, pp. 101–105, Toronto, Canada, October 2003.

    Google Scholar 

  50. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, M. Giordano (2004) “Thinned Fiber Bragg Gratings as High Sensitivity Refractive Index Sensor” EEE Phot. Technol. Lett., Vol. 16(No.4), pp. 1149 – 1151.

    Article  Google Scholar 

  51. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, (2005) “Thinned Fiber Bragg Gratings as Refractive Index Sensors” IEEE Sens. J., Vol. 5, No. 6, pp. 1288–1295.

    Article  Google Scholar 

  52. D. Marcuse (1991) “Theory of Dielectric Optical Waveguides”. Academic, New York.

    Google Scholar 

  53. D. A. Pereira, O. Frazao, and J. L. Santos (2004) “Fiber Bragg Grating Sensing System for Simultaneous Measurement of Salinity and temperature”, Opt. Eng., Vol. 43, No. 2, pp. 299–304.

    Article  Google Scholar 

  54. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cutolo (2005) “Non-Uniform Thinned Fiber Bragg Gratings for Simultaneous Refractive Index and Temperature Measurements” IEEE Phot. Technol. Lett., Vol. 17, No. 7, pp. 1495–1497.

    Article  Google Scholar 

  55. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano (2006) “Self Temperature Referenced Refractive Index Sensor by Non-Uniform Thinned Fiber Bragg Gratings” Sens. Actuators B: Chem., Vol. 120, No. 1 ,pp. 231–237.

    Article  Google Scholar 

  56. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano (2005) “Simultaneous Measurements of Refractive Index and Temperature by Non-Uniform Thinned Fiber Bragg Gratings” Proceedings of SPIE, Vol. 5855, pp. 479–482, Bruges.

    Article  Google Scholar 

  57. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais (2005) “High Sensitivity Evanescent Field Fiber Bragg Grating Sensor” IEEE Photon. Technol. Lett., Vol. 17, No. 6, pp. 1253–1255.

    Article  Google Scholar 

  58. A. N. Chryssis, S. S. Saini, S. M. Lee, Y. Hyunmin, W. E. Bentley, and M. Dagenais (2005) “Detecting Hybridization of DNA by Highly Sensitive Evanescent Field Etched core Fiber Bragg Grating Sensors”, IEEE J. Sel. Topics Quantum Electron., Vol. 11, No. 4, pp. 864–872.

    Article  Google Scholar 

  59. A. N. Chryssis, S. S. Saini, S. M. Lee, and M. Dagenais (2006) “Increased Sensitivity and Parametric Discrimination Using Higher Order Modes of Etched-Core Fiber Bragg Grating Sensors”, IEEE Photon. Technol. Lett., Vol. 18, No. 1, pp. 178–180.

    Article  Google Scholar 

  60. N. Chen, B. Yun, and Y. Cui (2006) “Cladding Mode Resonances of Etch-Eroded Fiber Bragg Grating for Ambient Refractive Index Sensing” Appl. Phys. Lett, Vol. 88, pp. 133902.

    Article  Google Scholar 

  61. A. Cusano, A. Iadicicco, P. Pilla, A. Cutolo, M. Giordano, and S. Campopiano (2006) “Sensitivity characteristics in Nanosized Coated Long Period Gratings”, Applied Physics Letters Vol. 89, pp. 201116.

    Article  Google Scholar 

  62. D. Paladino, A. Iadicicco, A. Cutolo, S. Campopiano, M. Giordano, and A. Cusano (2006) “Nano-Scale High Refractive Index Coated Thinned FBGs for Sensing Applications” Proceedings of the 18th Optical Fiber Sensors Conference SPIE Cancún, México.

    Google Scholar 

  63. G. Laffont and P. Ferdinand, (2001) “Tilted Short-Period Fibre-Bragg-Grating induced Coupling to Cladding Modes fo Accurate Refractometry” Meas. Sci. Technol. Vol. 12, pp. 765–770.

    Article  Google Scholar 

  64. O. Duhem, J.-F. Henninot, M. Warenghem, and M. Douay (1998) “Demonstration of long-period-grating efficient couplings with an external medium of a refractive index higher than that of silica”, Appl. Opt., Vol. 37, No. 31, pp. 7223–7228.

    Article  Google Scholar 

  65. G. Laffont and P. Ferdinand (2001) “Sensitivity of Slanted Fibre Bragg Gratings to External Refractive Index Higher Tha that of Silica” Electronics Letters 1st March 2001 Vol. 37, pp. 321–328.

    Google Scholar 

  66. X. Chen, K. Zhou, L. Zhang, and I. Bennion (2005) “Optical Chemsensor Based on Etched Tiled Bragg Grating Structures in Multimode Fiber”, IEEE Phot. Technol. Lett., 17(4), 864–866.

    Article  Google Scholar 

  67. C. Caucheteur and P. Mégret, (2005) “Demodulation Technique for Weakly Tilte Fiber Bregg Grating Refractometer,” IEEE Phot. Technol. Lett., Vol. 17, No. 12, pp. 2703–2705.

    Article  Google Scholar 

  68. D. Paladino, P. Pilla, A. Cutolo, S. Campopiano, M. Giordano, A. Cusano, C. Caucheteur, P. Mégret (2007) “Effects of Thickness and External Refractive Index in Coated Tilted Fiber Bragg Gratings” Proceedings of SPIE Vol. 6619, pp. 68.

    Google Scholar 

  69. D. Paladino, A. Cusano, P. Pilla, S. Campopiano, C. Caucheteur, and P. Mégret (2007) “Spectral Behaviour in Nano-Coated Tilted Fiber Bragg Gratings: Effect of Thickness and External Refrative Index” IEEE Phot. Technol. Lett., Vol. 19, No. 24, pp. 2051–2053.

    Article  Google Scholar 

  70. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano (2005) “Microstructured Fiber Bragg Gratings: Analysis and Fabrication”, IEE Electronics Lett., Vol. 41, No. 8, pp. 466–468.

    Article  Google Scholar 

  71. L. Wei and J.W.Y. Lit (1997) “Phase Shifted Bragg Grating Filters with Symmetrical Structures”, J. Lightwave Technol., Vol. 15, No. 8, pp. 421–426.

    Google Scholar 

  72. R. Zengerle and O. Leminger, (1995) “Phase Shifted Bragg-grating Filters with Improved Transmission Characteristics”, J. Lightwave Technol., Vol. 13, No. 12, pp. 543–549.

    Article  Google Scholar 

  73. A. Cusano, A. Iadicicco, S. Campopiano, M. Giordano, and A. Cutolo (2005) “Thinned and Micro-Structured Fiber Bragg Gratings: Towards New All Fiber High Sensitivity Chemical Sensors”, J. Opt., A: Pure App. Opt. Vol. 7, pp. 734–741.

    Article  Google Scholar 

  74. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano, (2007) “Micro-Structured Fiber Bragg Gratings. Part I: Spectral Characteristics”, Opt. Fiber Technol., Vol. 13, No. 4, pp. 281–290.

    Article  Google Scholar 

  75. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, (2005) “Refractive Index Sensor Based on Micro-Structured Fiber Bragg Grating”, IEEE Phot. Technol. Lett. Vol. 17, No. 5, pp. 1250–1252.

    Article  Google Scholar 

  76. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton (2006) “Compact Resonant Integrated Microfluidic Refractometers”, Appl. Phys. Lett. Vol. 88, pp. 093513.

    Article  Google Scholar 

  77. W. Liang, Y. Huanga, Y. Xu, R. K. Lee, and A. Yariv (2005) , “Highly Sensitive Fiber Bragg Grating Refractive Index Sensors”, Appl. Phys. Lett. Vol. 86, pp. 151122.

    Article  Google Scholar 

  78. A. Iadicicco, S. Campopiano, D. Paladino, A. Cutolo, and A. Cusano, (2007) “Micro-Structured Fiber Bragg Gratings: Optimization of the Fabrication Process”, Opt. Expr., Vol. 15, No. 23, pp. 15011–15021.

    Article  Google Scholar 

  79. A. Cusano, A. Iadicicco, D. Paladino, S. Campopiano, A. Cutolo, and M. Giordano (2007) “Micro-Structured Fiber Bragg Gratings. Part II: Towards Advanced Photonic Devices” Opt. Fiber Technol., Vol. 13, No. 4, pp. 291–301.

    Article  Google Scholar 

  80. M. Pisco, A. Iadicicco, S. Campopiano, A. Cutolo, and A. Cusano (2007) “Micro-Structured Chirped Fiber Bragg Gratings: Towards New Spatial Encoded Fiber Optic Sensors”, Proceedings of SPIE, Vol. 6619, 66192T.

    Google Scholar 

  81. K. Davis, K. Miura, N. Sugimoto, and K. Hirao, (1996) “Writing Waveguides in Glass with a Femtosecond Laser”, Opt. Lett., Vol. 21, pp. 1729–1731.

    Google Scholar 

  82. C. B. Schaffer, A. Brodeur, J. F. García, and E. Mazur (2001) “Micromachining Bulk Glass by Use of Femtosecond Laser Pulses with Nanojoule Energy”, Opt. Lett. Vol. 26, pp. 93–95.

    Article  Google Scholar 

  83. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, (2005) “Polarizationselective Etching in Femtosecond Laser-Assisted Microfluidic Channel Fabrication in Fused Silica”, Opt. Lett., Vol. 30, pp. 1867–1869.

    Article  Google Scholar 

  84. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, I. Bennion (2007) “A Refractometer Based on a Micro-Slot in a Fiber Bragg Grating Formed by Chemically Assisted Femtosecond Laser Processing”, Opt. Exp. Vol. 15, No. 24, p. 15848.

    Article  Google Scholar 

  85. B. Sutapun, M. Tabib-Azar, and A. Kazemi (1999) “Pd-Coated Elastooptic Fiber Optic Bragg Grating Sensors for Multiplexed Hydrogen Sensing”, Sens. Actuators B, Vol. 60, pp. 27–34.

    Article  Google Scholar 

  86. Y. Tang, T. Peng, J. S. Sirkis, B. A. Childers, J. P. Moore, and L. D. Melvin (1999) “Characterization of a Fiber Bragg Grating (FBG)-Based Palladium Tube Hydrogen sensor”, in Proc. SPIE Smart Structures Mater. Conf., 1999, Vol. 3670, pp. 532–540.

    Google Scholar 

  87. Y. T. Peng, Y. Tang, and J. S. Sirkis (1999) “Hydrogen Sensors Based on Palladium Electroplated Fiber Bragg Gratings,” in Proc. SPIE 13th Int. Conf. Opt. Fiber Sensors Workshop Device Syst. Technol. Toward Future Opt. Fiber Commun. Sensing, Vol. 3746, pp. 171–179.

    Google Scholar 

  88. R. R. J. Maier, J. S. Barton, J. D. C. Jones, S. McCulloch, B. J. S. Jones, and G. Burnell, (2006) “Palladium-Based Hydrogen Sensing for Monitoring of Ageing Materials,” Meas. Sci. Technol., Vol. 17, pp. 1118–1123.

    Article  Google Scholar 

  89. M. Buric, K. P. Chen, M. Bhattarai, P. R. Swinehart, and M. Maklad (2007) “Active Fiber Bragg Grating Hydrogen Sensors for All-Temperature Operation,” IEEE Photon. Technol. Lett., Vol. 19, No. 5, pp. 255–257.

    Article  Google Scholar 

  90. A. Guemes, J. M. Pintado, M. Frovel, E. Olmo, and A. Obst (2005) “Comparison of Three Types of Fibre Optic Hydrogen sensors Within the Frame of CryoFOS Project”, Proceedings of the 17th International Conference on Optical Fibre Sensors, SPIE 5855 (SPIE Bellingham, WA, 1000–1003.

    Google Scholar 

  91. C. Caucheteur, M. Debliquy, D. Lahem, and P. Mégret (2008) “Cataltic Fiber Bragg Grating Sensor for Hydrogen Leak Detection in Air”, IEEE Phot. Technol. Lett., Vol. 20, No. 2, pp. 240–246.

    Article  Google Scholar 

  92. G. B. Tait, G. C. Tepper, D. Pestov, and P. M. Boland, (2005) “Fiber Bragg Grating Multi-Functional Chemical Sensor”, Proceedings, 2005 SPIE International Symposium Optics East (Boston, MA).

    Google Scholar 

  93. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, (2005) “Characterisation of a Polymer-Coated Fiber Bragg Grating Sensor for Relative Humidity Sensing,” Sens. Actuators B, 110, 148–155.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cusano, A., Cutolo, A., Giordano, M. (2008). Fiber Bragg Gratings Evanescent Wave Sensors: A View Back and Recent Advancements. In: Mukhopadhyay, S., Huang, R. (eds) Sensors. Lecture Notes Electrical Engineering, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69033-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69033-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69030-6

  • Online ISBN: 978-3-540-69033-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics