Skip to main content

Adaptive Olfactory Encoding in Agents Controlled by Spiking Neural Networks

  • Conference paper
From Animals to Animats 10 (SAB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5040))

Included in the following conference series:

Abstract

We created a neural architecture that can use two different types of information encoding strategies depending on the environment. The goal of this research was to create a simulated agent that could react to two different overlapping chemicals having varying concentrations. The neural network controls the agent by encoding its sensory information as temporal coincidences in a low concentration environment, and as firing rates at high concentration. With such an architecture, we could study synchronization of firing in a simple manner and see its effect on the agent’s behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  2. Brody, C.D., Hopfield, J.J.: Simple Networks for Spike-Timing-Based Computation, with Application to Olfactory Processing. Neuron 37, 843–852 (2003)

    Article  Google Scholar 

  3. Floreano, D., Mattiussi, C.: Evolution of Spiking Neural Controllers for Autonomous Vision-Based Robots. In: Gomi, T. (ed.) ER-EvoRob 2001. LNCS, vol. 2217, pp. 38–61. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Florian, R.V.: Biologically inspired neural networks for the control of embodied agents. Technical report Coneural-03-03 Version 1.0 (2003)

    Google Scholar 

  5. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  6. Hopfield, J.J.: Odor space and olfactory processing: Collective algorithms and neural implementation. PNAS 96, 12506–12511 (1999)

    Article  Google Scholar 

  7. Hoshino, O., Kashimori, Y., Kambara, T.: An olfactory recognition model based on spatio-temporal encoding of odor quality in the olfactory bulb. Biological Cybernetics 79, 109–120 (1998)

    Article  MATH  Google Scholar 

  8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks (2003)

    Google Scholar 

  9. Izhikevich, E.M.: Which model to use for cortical spiking neurons. IEEE Transactions on Neural Networks (2004)

    Google Scholar 

  10. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  11. Kanzaki, R., Nagasawa, S., Shimoyama, I.: Neural Basis of Odor-source Searching Behavior in Insect Brain Systems Evaluated with a Mobile Robot. Chemical Senses 30, 285–286 (2005)

    Article  Google Scholar 

  12. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York (1999)

    Google Scholar 

  13. Kuwana, Y., Shimoyama, I.: A Pheromone-Guided Mobile Robot that Behaves like a Silkworm Moth with Living Antennae as Pheromone Sensors. The International Journal of Robotics Research 17, 924–933 (1998)

    Article  Google Scholar 

  14. Laurent, G., Wehr, M., Davidowitz, H.: Temporal Representations of Odors in an Olfactory Network. Journal of Neuroscience 16, 3837–3847 (1996)

    Google Scholar 

  15. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone Robotics. Auton. Robots. 11, 319–324 (2001)

    Article  MATH  Google Scholar 

  16. Pyk, P., Bermúdez i Badia, S., Bernardet, U., Knüsel, P., Carlsson, M., Gu, J., Chanie, E., Hansson, B., Pearce, T.J., Verschure, P.: An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search. Autonomous Robots 20, 197–213 (2006)

    Google Scholar 

  17. Webb, B.: Robots crickets and ants: models of neural control of chemotaxis and phonotaxis. Neural Networks 11, 1479–1496 (1998)

    Article  Google Scholar 

  18. Wyatt, T.D.: Pheromones and Animal Behaviour, Communication by Smell and Taste. Cambridge University Press, Cambridge (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Minoru Asada John C. T. Hallam Jean-Arcady Meyer Jun Tani

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Oros, N., Steuber, V., Davey, N., Cañamero, L., Adams, R. (2008). Adaptive Olfactory Encoding in Agents Controlled by Spiking Neural Networks. In: Asada, M., Hallam, J.C.T., Meyer, JA., Tani, J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science(), vol 5040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69134-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69134-1_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69133-4

  • Online ISBN: 978-3-540-69134-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics