Skip to main content

Proteomic Insights: Cryoadaptation of Permafrost Bacteria

  • Chapter
Permafrost Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 16))

The permafrost microbial community has been described as “a community of survivors” (Friedman 1994). Because of the permanently cold condition and the long term isolation of the permafrost sediments, the permafrost microorganisms have acquired various adaptive features in the membrane, enzymes, and macromolecular synthesis. This chapter reviews the different adaptive mechanisms used by permafrost microorganisms with a focus on the proteomic level of cryoadaptation that have recently been identified during the low temperature growth in permafrost bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol 186:2340–2345

    Article  PubMed  CAS  Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at -10 degrees C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Bakermans C, Tollaksen SL, Giometti CS, Wilkerson C, Tiedje JM, Thomashow MF (2007) Proteomic analysis of Psychrobacter cryohalolentis K5 during growth at subzero temperatures. Extremophiles 11:343–354

    Article  PubMed  CAS  Google Scholar 

  • Barbara SE, Trevors JT, Inniss WE (2002) Effect of different carbon sources and cold shock on protein synthesis by a psychrotrophic Acinetobacter sp. Can J Microbiol 48:239–244

    Article  Google Scholar 

  • Bayles DO, Annous BA, Wilkinson BJ (1996) Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl Environ Microbiol 62:1116–1119

    PubMed  CAS  Google Scholar 

  • Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178:2999–3007

    PubMed  CAS  Google Scholar 

  • Berger F, Normand P, Potier P (1997) capA, a cspA-like gene that encodes a cold acclimation protein in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 179:5670–5676

    PubMed  CAS  Google Scholar 

  • Brenchley JE (1996) Psychrophilic microorganisms and their cold-active enzymes. J Ind Microbiol Biotechnol 17:432–437

    Article  CAS  Google Scholar 

  • Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Natl Acad Sci USA 87:862–866

    Article  PubMed  CAS  Google Scholar 

  • Broadbent JR, Lin C (1999) Effect of heat shock or cold shock treatment on the resistance of Lactococcus lactis to freezing and lyophilization. Cryobiology 39:88–102

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PMG (2000) Cold stress response in Archaea. Extremophiles 4:321–331

    Article  PubMed  CAS  Google Scholar 

  • Chong BE, Kim J, Lubman DM, Tiedje JM, Kathariou S (2000) Use of non-porous reversed-phase high-performance liquid chromatography for protein profiling and isolation of proteins induced by temperature variations for Siberian permafrost bacteria with identification by matrix-assisted laser desorption lionization time-of-flight mass spectrometry and capillary electrophoresis-electrospray ionization mass spectrometry. J Chromatogr 748:167–177

    Article  CAS  Google Scholar 

  • Colucci MS, Inniss WE (1996) Ethylene glycol utilization, cold and ethylene glycol shock and acclimation proteins in a psychrotrophic bacterium. Curr Microbiol 32:179–182

    Article  CAS  Google Scholar 

  • Derzelle S, Hallet B, Ferain T, Delcour J, Hols P (2003) Improved adaptation to cold-shock, stationary-phase, and freezing stresses in Lactobacillus plantarum overproducing cold-shock proteins. Appl Environ Microbiol 69:4285–4290

    Article  PubMed  CAS  Google Scholar 

  • Ermolenko DN, Makhatadze GI (2002) Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913

    Article  PubMed  CAS  Google Scholar 

  • Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S, Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18:189–202

    Article  CAS  Google Scholar 

  • Friedman I (1994) Permafrost as a microbial habitat. In: Gilichinsky D (ed) Viable microorganisms in permafrost. Pushchino Researcher Centre, Russian Academy of Sciences, Pushchino, pp 21–26

    Google Scholar 

  • Fukunaga N, Sahara T, Takada Y (1999) Bacterial adaptation to low temperature: Implications for cold-inducible genes. J Plant Res 112:263–272

    Article  CAS  Google Scholar 

  • Gilichinsky D (2002) Permafrost as a microbial habitat. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 932–956

    Google Scholar 

  • Gilichinsky D, Rivkina E, Bakermans C, Shcherbakova V, Petrovskaya L, Ozerskaya S, Ivanushkina N, Kochkina G, Laurinavichuis K, Pecheritsina S, Fattakhova R, Tiedje JM (2005) Biodiversity of cryopegs in permafrost. FEMS Microbiol Ecol 53:117–128

    Article  PubMed  CAS  Google Scholar 

  • Goodchild A, Raftery M, Saunders NFW, Guilhaus M, Cavicchioli R (2005) Cold adaptation of the Antarctic archaeon, Methanococcoides burtonii assessed by proteomics using ICAT J Proteome Res 4:473–480

    Article  PubMed  CAS  Google Scholar 

  • Graumann P, Marahiel MA (1996) Some like it cold: Response of microorganisms to cold shock. Arch Microbiol 166:293–300

    Article  PubMed  CAS  Google Scholar 

  • Guo JJ, Gong XG (2002) Progress in cold shock protein. Prog Biochem Biophys 29:691–695

    CAS  Google Scholar 

  • Harris SA (1986) The Permafrost Environment. Barnes & Noble Books, Towowa, New York

    Google Scholar 

  • Hochachka P, Somero G (1984) Biochemical adaptation. Princeton University Press, Princeton

    Google Scholar 

  • Jain V, Kumar M, Chatterji D (2006) ppGpp: Stringent response and survival. J Microbiol 44:1–10

    PubMed  CAS  Google Scholar 

  • Jones PG, Inouye M (1994) The cold-shock response — a hot topic. Mol Microbiol 11:811–818

    Article  PubMed  CAS  Google Scholar 

  • Jones TH, Murray A, Johns M, Gill CO, McMullen LM (2006) Differential expression of proteins in cold-adapted log-phase cultures of Escherichia coli incubated at 8, 6 or 2 degrees C. Int J Food Microbiol 107:12–19

    Article  PubMed  CAS  Google Scholar 

  • Kandror O, Goldberg AL (1997) Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc Natl Acad Sci USA 94:4978–4981

    Article  PubMed  CAS  Google Scholar 

  • Kawahara H (2002) The structures and functions of ice crystal-controlling proteins from bacteria. J Biosci Bioengin 94:492–496

    CAS  Google Scholar 

  • Kawamoto J, Kurihara T, Kitagawa M, Kato I, Esaki N (2007) Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of coldinducible proteins. Extremophiles 11:819–826

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Khunajakr N, Dunn NW (1998a) Effect of cold shock on protein synthesis and on cryotolerance of cells frozen for long periods in Lactococcus lactis. Cryobiology 37:86–91

    Article  PubMed  CAS  Google Scholar 

  • Kim WS, Khunajakr N, Ren J, Dunn NW (1998b) Conservation of the major cold shock protein in lactic acid bacteria. Curr Microbiol 37:333–336

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Tommassen J (1993) Expression of the Pspa gene stimulates efficient protein export in Escherichia coli. Mol Microbiol 7:947–956

    Article  PubMed  CAS  Google Scholar 

  • Kleerebezem M, Crielaard W, Tommassen J (1996) Involvement of stress protein PspA (phage shock protein A) of Escherichia coli in maintenance of the protonmotive force under stress conditions. EMBO J 15:162–171

    PubMed  CAS  Google Scholar 

  • Lee SJ, Xie AG, Jiang WN, Etchegaray JP, Jones PG, Inouye M (1994) Family of the major coldshock protein, Cspa (Cs7.4), of Escherichia-Coli, whose members show a high sequence similarity with the eukaryotic Y-box binding-proteins. Mol Microbiol 11:833–839

    Article  PubMed  CAS  Google Scholar 

  • Liu SQ, Graham JE, Bigelow L, Morse PD, Wilkinson BJ (2002) Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl Environ Microbiol 68:1697–1705

    Article  PubMed  CAS  Google Scholar 

  • Lottering EA, Streips UN (1995) Induction of cold-shock proteins in Bacillus subtilis. Curr Microbiol 30:193–199

    Article  PubMed  CAS  Google Scholar 

  • Mathy N, Jarrige AC, Robert-Le Meur M, Portier C (2001) Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol. J Bacteriol 183:3848–3854

    Article  PubMed  CAS  Google Scholar 

  • McGrath JSW, Gilichinsky D (1994) Cryobological studies of ancient microorganisms isolated from the Siberian permafrost. In: Gilichinsky D (ed) Viable microorganisms in permafrost. Pushchino Researcher Centre, Russian Academy of Sciences, Pushchino, pp 48–67

    Google Scholar 

  • Mihoub F, Mistou MY, Guillot A, Leveau JY, Boubetra A, Billaux F (2003) Cold adaptation of Escherichia coli: microbiological and proteomic approaches. Int J Food Microbiol 89:171–184

    Article  PubMed  CAS  Google Scholar 

  • Minami A, Nagao M, Ikegami K, Koshiba T, Arakawa K, Fujikawa S, Takezawa D (2005) Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. Planta 220:414–423

    Article  PubMed  CAS  Google Scholar 

  • Mindock CA, Petrova MA, Hollingsworth RI (2001) Re-evaluation of osmotic effects as a general adaptative strategy for bacteria in sub-freezing conditions. Biophys Chem 89:13–24

    Article  PubMed  CAS  Google Scholar 

  • Model P, Jovanovic G, Dworkin J (1997) The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol 24:255–261

    Article  PubMed  CAS  Google Scholar 

  • Munsch-Alatossava P, Alatossava T (2007) Antibiotic resistance of raw-milk-associated psychrotrophic bacteria. Microbiol Res 162:115–123

    Article  PubMed  CAS  Google Scholar 

  • Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

    Article  PubMed  CAS  Google Scholar 

  • Obata H, Ishigaki H, Kawahara H, Yamade K (1998) Purification and characterization of a novel cold-regulated protein from an ice-nucleating bacterium, Pseudomonas fluorescens KUIN-1. Biosci Biotechnol Biochem 62:2091–2097

    Article  PubMed  CAS  Google Scholar 

  • Ostroumov VE, Siegert C (1996) Exobiological aspects of mass transfer in microzones of permafrost deposits. In: Brack A, Horneck G, Friedmann EI, Meyer MA, Reitz R, Banin A (eds) Life sciences: space and Mars recent results. Pergamon, Oxford, pp 79–86

    Google Scholar 

  • Panoff JM, Corroler D, Thammavongs B, Boutibonnes P (1997) Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2-2. J Bacteriol 179:4451–4454

    PubMed  CAS  Google Scholar 

  • Phan-Thanh L, Gormon T (1997) Stress proteins in Listeria monocytogenes. Electrophoresis 18:1464–1471

    Article  PubMed  CAS  Google Scholar 

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MF, Tiedje JM (2005) Characterization of potential stress responses in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  PubMed  CAS  Google Scholar 

  • Price PB, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA 101:4631–4636

    Article  PubMed  CAS  Google Scholar 

  • Qiu Y, Kathariou S, Lubman DM (2006) Proteomic analysis of cold adaptation in a Siberian permafrost bacterium — Exiguobacterium sibiricum 255-15 by two-dimensional liquid separation coupled with mass spectrometry. Proteomics 6:5221–5233

    Article  PubMed  CAS  Google Scholar 

  • Roberts ME, Inniss WE (1992) The synthesis of cold shock proteins and cold-acclimation proteins in the psychrophilic bacterium Aquaspirillum-arcticum. Curr Microbiol 25:275–278

    Article  CAS  Google Scholar 

  • Salotra P, Singh DK, Seal KP, Krishna N, Jaffe H, Bhatnagar R (1995) Expression of Dnak and Groel homologs in Leuconostoc esenteroides in response to heat-shock, cold shock or chemical stress. FEMS Microbiol Lett 131:57–62

    Article  PubMed  CAS  Google Scholar 

  • Sardesai N, Babu CR (2000) Cold stress induces switchover of respiratory pathway to lactate glycolysis in psychrotrophic Rhizobium strains. Folia Microbiol 45:177–182

    Article  CAS  Google Scholar 

  • Sinchaikul S, Sookkheo B, Phutrakul S, Pan FM, Chen ST (2002) Proteomic study of cold shock protein in Bacillus stearothermophilus P1: Comparison of temperature downshifts. Proteomics 2:1316–1324

    Article  PubMed  CAS  Google Scholar 

  • Soina VS, Mulyukin AL, Demkina EV, Vorobyova EA, El-Registan GI (2004) The structure of resting bacterial populations in soil and subsoil permafrost. Astrobiology 4:345–358

    Article  PubMed  Google Scholar 

  • Somer L, Shmulman O, Dror T, Hashmueli S, Kashi Y (2002) The eukaryote chaperonin CCT is a cold shock protein in Saccharomyces cerevisiae. Cell Stress Chaperones 7:47–54

    Article  PubMed  CAS  Google Scholar 

  • Storad BC (1990) Forever frozen. ASU Res 5:22–25

    Google Scholar 

  • Thammavongs B, Panoff JM, Gueguen M (2000) Phenotypic adaptation to freeze-thaw stress of the yeast-like fungus Geotrichum candidum. Int J Food Microbiol 60:99–105

    Article  PubMed  CAS  Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya TA, Petrova MA, Urbance J, Ponder M, Moyer CL, Gilichinsky DA, Tiedje JM (2006) Bacterial community in ancient Siberian permafrost as characterized by culture and culture-independent methods. Astrobiology 6:400–414

    Article  PubMed  CAS  Google Scholar 

  • Vishnivetskaya TA, Siletzky R, Jefferies N, Tiedje JM, Kathariou S (2007) Effect of low temperature and culture media on the growth and freeze-thawing tolerance of Exiguobacterium strains. Cryobiology 54:234–240

    Article  PubMed  CAS  Google Scholar 

  • Whyte LG, Inniss WE (1992) Cold shock proteins and cold-acclimation proteins in a psychrotrophic bacterium. Can J Microbiol 38:1281–1285

    Article  CAS  Google Scholar 

  • Williams PJ, Smith MW (1989) The frozen Earth. Fundamentals of geocryology (Studies in polar research). Cambridge University Press, Cambridge

    Google Scholar 

  • Wouters JA, Jeynov B, Rombouts FM, de Vos WM, Kuipers OP, Abee T (1999) Analysis of the role of 7kDa cold-shock proteins of Lactococcus lactis MG1363 in cryoprotection. Microbiology-UK 145:3185–3194

    CAS  Google Scholar 

  • Wouters JA, Kamphuis HH, Hugenholtz J, Kuipers OP, De Vos WM, Abee T (2000) Changes in glycolytic activity of Lactococcus lactis induced by low temperature. Appl Environ Microbiol 66:3686–3691

    Article  PubMed  CAS  Google Scholar 

  • Wouters JA, Frenkiel H, de Vos gnWM, Kuipers OP, Abee T (2001) Cold shock proteins of Lactococcus lactis MG1363 are involved in cryoprotection and in the production of coldinduced proteins. Appl Environ Microbiol 67:5171–5178

    Article  PubMed  CAS  Google Scholar 

  • Zheng SP, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of Psychrobacter articus 273–4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Lubman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qiu, Y., Vishnivetskaya, T.A., Lubman, D.M. (2009). Proteomic Insights: Cryoadaptation of Permafrost Bacteria. In: Margesin, R. (eds) Permafrost Soils. Soil Biology, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69371-0_12

Download citation

Publish with us

Policies and ethics