Skip to main content

Experimental Models of the Sebaceous Gland

  • Chapter
Pathogenesis and Treatment of Acne and Rosacea

Abstract

Experimental sebaceous gland models are essential for a better understanding of the pathophysiology of human skin disorders involving the sebaceous gland, such as sebostasis, seborrhea, and acne, for thorough research and development of cosmetics and drugs, and for investigation of drug pharmacokinetics. So, the need for an established model for studies of sebocyte differentiation and for pharmacologic assays has led into considerable advances in this field (Table 6.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpenter WR, Goodridge AG. Cells isolated from duck sebaceous glands undergo partial differentiation in primary culture. Fed Proc. 1986;45:1579.

    Google Scholar 

  2. Kanaar P, Plameijer HS. An investigation of the influence of testosterone on a sebaceous gland model in organ-culture. Preliminary communication. Dermatologica. 1972;144:353–4.

    Article  CAS  PubMed  Google Scholar 

  3. Karasek MA, Charlton ME. In vitro growth and serial cultivation of normal human sebaceous gland cells. Clin Res. 1982;30:263A.

    Google Scholar 

  4. Karasek MA. Growth characteristics of human sebaceous gland cells in cell culture. Clin Res. 1986;34:416A.

    Google Scholar 

  5. Cooper MF, McGrath H, Shuster S. Sebaceous lipogenesis in human skin. Variability with age and severity of acne. Br J Dermatol. 1976;94:165–72.

    Article  CAS  PubMed  Google Scholar 

  6. Hsia SL, Fulton JE, Fulgham D, et al. Lipid synthesis from acetate-1-C by suction blister epidermis ad other skin components. Proc Soc Exp Biol Med. 1970;135:285–91.

    Article  CAS  PubMed  Google Scholar 

  7. Sharp F, Hay JB, Hodgins MB. Metabolism of androgens in vitro by human fetal skin. J Endocrinol. 1976;70:491–9.

    Article  CAS  PubMed  Google Scholar 

  8. Petersen MJ, Zone JJ, Krueger GG. Development of a nude mouse model to study human sebaceous gland physiology and pathophysiology. J Clin Invest. 1984;74:1358–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kealey T, Lee CM, Thody AJ, et al. The isolation of human sebaceous glands and apocrine sweat glands by shearing. Br J Dermatol. 1986;114:181–8.

    Article  CAS  PubMed  Google Scholar 

  10. Sanders DA, Philpott MP, Nicolle FV, et al. The isolation and maintenance of the human pilosebaceous unit. Br J Dermatol. 1994;131:166–76.

    Article  CAS  PubMed  Google Scholar 

  11. Xia L, Zouboulis C, Detmar M, et al. Isolation of human sebaceous glands and cultivation of sebaceous gland-derived cells as an in vitro model. J Invest Dermatol. 1989;93:315–21.

    Article  CAS  PubMed  Google Scholar 

  12. Zouboulis CC, Xia L, Akamatsu H, et al. The human sebocyte culture model provides new insights into development and management of seborrhea and acne. Dermatology. 1998;196:21–31.

    Article  CAS  PubMed  Google Scholar 

  13. Zouboulis CC, Malte Baron J, Bohm M, et al. Frontiers in sebaceous gland biology and pathology. Exp Dermatol. 2008;17:542–51.

    Article  CAS  PubMed  Google Scholar 

  14. Niemann C, Unden AB, Lyle S, et al. Indian hedgehog and β-catenin signaling: Role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A. 2003;100 Suppl 1:11873–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lo Celso C, Berta M, Braun K, et al. Characterisation of bipotential epidermal progenitors derived from human sebaceous gland: contrasting roles of c-Myc and β-catenin. Stem Cells. 2008;26:1241–52.

    Article  CAS  PubMed  Google Scholar 

  16. Doran TI, Baff R, Jacobs P, et al. Characterization of human sebaceous cells in vitro. J Invest Dermatol. 1991;96:341–8.

    Article  CAS  PubMed  Google Scholar 

  17. Doran TI, Baff R. The inhibition of proliferation of human sebaceous cells in vitro as a predictive assay for anti-acne activity. J Invest Dermatol. 1988;90:554.

    Google Scholar 

  18. Zouboulis CC, Xia L, Detmar M, et al. Culture of human sebocytes and markers of sebocytic differentiation in vitro. Skin Pharmacol. 1991;4:74–83.

    Article  CAS  PubMed  Google Scholar 

  19. Lee CM. Cell culture systems for the study of human skin and skin glands. In: Jones CJ, editor. Epithelia: advances in cell physiology and cell culture. Dordrecht: Kluwer; 1990. p. 333–50.

    Chapter  Google Scholar 

  20. Akamatsu H, Zouboulis CC, Orfanos CE. Control of human sebocyte proliferation in vitro by testosterone and 5-alpha-didydrotestosterone is dependent on the localization of the sebaceous glands. J Invest Dermatol. 1992;99:509–11.

    Article  CAS  PubMed  Google Scholar 

  21. Akamatsu H, Zouboulis CC, Orfanos CE. Spironolactone directly inhibits proliferation of cultured human facial sebocytes and acts antagonistically to testosterone and 5-alpha-dihydrotestosterone in vitro. J Invest Dermatol. 1993;100:660–2.

    Article  CAS  PubMed  Google Scholar 

  22. Zouboulis CC, Korge BP, Mischke D, et al. Altered proliferation, synthetic activity and differentiation of cultured human sebocytes in the absence of vitamin A and their modulation by synthetic retinoids. J Invest Dermatol. 1993;101:628–33.

    Article  CAS  PubMed  Google Scholar 

  23. Fujie T, Shikiji T, Uchida N, et al. Culture of cells derived from the human sebaceous gland under serum-free conditions without a biological feeder layer or specific matrices. Arch Dermatol Res. 1996;288:703–8.

    Article  CAS  PubMed  Google Scholar 

  24. Chen W, Zouboulis CC, Fritsch M, et al. Evidence of heterogeneity and quantitative differences of the type 1 5a-reductase expression in cultured human skin cells: Evidence of its presence in melanocytes. J Invest Dermatol. 1998;110:84–9.

    Article  CAS  PubMed  Google Scholar 

  25. Imagawa W, Cunha GR, Young P, et al. Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium. Biochem Biophys Res Commun. 1994;204:1165–9.

    Article  CAS  PubMed  Google Scholar 

  26. Seltman H, Ruhl R, Seiffert K, et al. Isotretinoin treatment of human sebocytes in vitro results in low isotretinoin, but considerably elevated tretinoin intracellular levels and its effect is not affected by the presence of retinol. J Invest Deramtol. 1997;108:374.

    Google Scholar 

  27. Zouboulis CC, Seltmann H, Neitzel H, et al. Establishment and characterization of an immortalized human sebaceous gland cell line (SZ95). J Invest Dermatol. 1999;113:1011–20.

    Article  CAS  PubMed  Google Scholar 

  28. Zouboulis CC, Schagen S, Alestas T. The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol Res. 2008;300:397–413.

    Article  PubMed  Google Scholar 

  29. Wrobel A, Seltmann H, Fimmel S, et al. Differentiation and apoptosis in human immortalized sebocytes. J Invest Dermatol. 2003;120:175–81.

    Article  CAS  PubMed  Google Scholar 

  30. Thiboutot D, Jabara S, McAllister J, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120:905–14.

    Article  CAS  PubMed  Google Scholar 

  31. Zouboulis CC, Nestoris S, Adler Y, et al. A new concept for acne therapy: a pilot study with zileuton, an oral 5-lipoxygenase inhibitor. Arch Dermatol. 2003;139:668–70.

    Article  PubMed  Google Scholar 

  32. Zouboulis CC, Saborowski A, Boschnakow A. Zileuton, an oral 5-lipoxygenase inhibitor, directly reduces sebum proliferation. Dermatology. 2005;210:36–8.

    Article  CAS  PubMed  Google Scholar 

  33. Zouboulis CC, Korge B, Akamatsu H, et al. Effects of 13-cis-retinoic acid, all-trans-retinoic acid and acitretin on the proliferation, lipid synthesis and keratin expression of cultured human sebocyte in vitro. J Invest Dermatol. 1991;96:792–7.

    Article  CAS  PubMed  Google Scholar 

  34. Zouboulis CC, Krieter A, Gollnick H, et al. Progressive differentiation of human sebocytes in vitro is characterized by increasing cell size and altering antigen expression and is regulated by culture duration and retinoids. Exp Dermatol. 1994;3:151–60.

    Article  CAS  PubMed  Google Scholar 

  35. Tsukada M, Schroder M, Roos T, et al. 13-cis retinoic acid exerts its specific activity on human sebocytes through selective intracellular isomerization to all-trans retinoic acid and binding to retinoic acid receptors. J Invest Dermatol. 2000;115:321–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nelson A, Gilliland K, Cong Z, et al. 13-cis retinoid acid induces apoptosis and cell cycle arrest in human SEB-1 sebocytes. J Invest Dermatol. 2006;126:2178–89.

    Article  CAS  PubMed  Google Scholar 

  37. Papakonstantinou E, Aletras A, Glass E, et al. Matrix metalloproteinases of epithelial origin in facial sebum of patients with acne and their regulation by isotretinoin. J Invest Dermatol. 2005;125:673–84.

    Article  CAS  PubMed  Google Scholar 

  38. Fritsch M, Orfanos C, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116:793–800.

    Article  CAS  PubMed  Google Scholar 

  39. Zouboulis CC, Seltmann H, Alestas T. Zileuton prevents the activation of the leukotriene pathway and reduces sebaceous lipogenesis. Exp Dermatol. 2010;19:148–50.

    Article  CAS  PubMed  Google Scholar 

  40. Thielitz A, Reinhold D, Vetter R, et al. Inhibitors of dipeptidyl peptidase IV(DP IV) and aminopeptidase N (APN) show strong anti-inflammatory effects on immune cells and therapeutic efficacy in autoimmune disorders. J Invest Dermatol. 2007;127:1042–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clio Dessinioti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zouboulis, C.C., Dessinioti, C. (2014). Experimental Models of the Sebaceous Gland. In: Zouboulis, C., Katsambas, A., Kligman, A. (eds) Pathogenesis and Treatment of Acne and Rosacea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69375-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69375-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69374-1

  • Online ISBN: 978-3-540-69375-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics