Skip to main content

Hopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images

  • Conference paper
Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects (ICDM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5077))

Included in the following conference series:

Abstract

We study filter–based feature selection methods for classification of biomedical images. For feature selection, we use two filters — a relevance filter which measures usefulness of individual features for target prediction, and a redundancy filter, which measures similarity between features. As selection method that combines relevance and redundancy we try out a Hopfield network. We experimentally compare selection methods, running unitary redundancy and relevance filters, against a greedy algorithm with redundancy thresholds [9], the min-redundancy max-relevance integration [8,23,36], and our Hopfield network selection. We conclude that on the whole, Hopfield selection was one of the most successful methods, outperforming min-redundancy max-relevance when more features are selected.

This research was supported by the Spanish MEC Project “3D Reconstruction, classification and visualization of temporal sequences of bioimplant Micro-CT images“ (MAT-2005-07244-C03-03).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdi, H.: Les reseaux de neurones. Presses Universitaires de Grenoble (1994)

    Google Scholar 

  2. Auffarth, B.: Classification of biomedical high-resolution micro-ct images for direct volume rendering. Master’s thesis, University of Barcelona, Barcelona, Spain (2007)

    Google Scholar 

  3. Burt, P.J., Adelson, E.H.: The laplacian pyramid as a compact image code. IEEE Trans. Communications 31, 532–540 (1983)

    Article  Google Scholar 

  4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/libsvm .

  5. Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20, 273–297 (1995)

    MATH  Google Scholar 

  6. Cover, T.M.: The best two independent measurements are not the two best. IEEE Transactions on Systems, Man, and Cybernetics 4, 116–117 (1974)

    MATH  Google Scholar 

  7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  8. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. In: Second IEEE Computational Systems Bioinformatics Conference, pp. 523–529 (2003)

    Google Scholar 

  9. Duch, W., Biesiada, J.: Feature selection for high-dimensional data: A kolmogorov-smirnov correlation-based filter solution. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Advances in Soft Computing, pp. 95–104. Springer, Heidelberg (2005)

    Google Scholar 

  10. Einhäuser, W., Kruse, W., Hoffman, K.-P., König, P.: Differences of monkey and human overt attention under natural conditions. Vision Research 46(8-9), 1194–1209 (2006)

    Article  Google Scholar 

  11. Fawcett, T.: Roc graphs: Notes and practical considerations for researchers. technical report, HP Laboratories, Palo Alto (2004)

    Google Scholar 

  12. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. BioCyber 61, 102–113 (1989)

    Google Scholar 

  13. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting, Tech. report, Department of Statistics, Stanford University (1998)

    Google Scholar 

  14. Fries, P., Reynolds, J.H., Rorie, A.E., Desimone, R.: Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563 (2001)

    Article  Google Scholar 

  15. Graf, A.B.A., Borer, S.: Normalization in support vector machines. In: Radig, B., Florczyk, S. (eds.) DAGM 2001. LNCS, vol. 2191, pp. 277–282. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the NIPS feature selection challenge, vol. 17, pp. 545–552. MIT Press, Cambridge (2004)

    Google Scholar 

  17. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Science, vol. 79, pp. 2554–2558 (1982)

    Google Scholar 

  18. Hopfield, J.J.: Neurons with graded responses have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences 81, 3088–3092 (1984)

    Article  Google Scholar 

  19. Knijnenburg, T.A.: Selecting relevant and non-relevant features in microarray classification applications. Master’s thesis, Delft Technical University, Faculty of Electrical Engineering, 2628 CD Delft (2004)

    Google Scholar 

  20. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  21. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique. Data Min. Knowl. Discov. 6(4), 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  22. López-Sánchez, M., Cerquides, J., Masip, D., Puig, A.: Classification of biomedical high-resolution micro-ct images for direct volume rendering. In: Proceedings of IASTED International Conference on Artificial Intelligence and Applications (AIA 2007), Austria, pp. 341–346. IASTED (2007)

    Google Scholar 

  23. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  24. Reinagel, P., Zador, A.: Natural scene statistics at center of gaze. Network: Comp. Neural Syst. 10, 341–350 (1999)

    Article  MATH  Google Scholar 

  25. Riedmiller, M., Braun, H.: Rprop – description and implementation details. Technical report, Universitat Karlsruhe (1994)

    Google Scholar 

  26. Rossi, F., Lendasse, A., François, D., Wertz, V., Verleysen, M.: Mutual information for the selection of relevant variables in spectrometric nonlinear modelling. Chemometrics and Intelligent Laboratory Systems 2(80), 215–226 (2006)

    Article  Google Scholar 

  27. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. MIT AI Lab Memo AIM-2005-025, MIT CSAIL (September 2005)

    Google Scholar 

  28. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics (August 24, 2007)

    Google Scholar 

  29. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Communications of the ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  30. Vogt, M. (accessed 9-October-2007), http://pc228.rt.e-technik.tu-darmstadt.de/~vogt/de/software.html

  31. Tank, D.W., Hopfield, J.J.: Simple “neural” optimization networks: An a/d converter, signal decision circuit, and a linear programming circuit. ieeetcas 33, 533–541 (1986)

    Google Scholar 

  32. Valenzuela, O., Rojas, I., Herrera, L.J., Guillén, A., Rojas, F., Marquez, L., Pasadas, M.: Feature selection using mutual information and neural networks. Monografias del Seminario Matematico Garcia de Galdeano 33, 331–340 (2006)

    Google Scholar 

  33. Xu, D., Lee, J., Raicu, D.S., Furst, J.D., Channin, D.: Texture classification of normal tissues in computed tomography. In: The 2005 Annual Meeting of the Society for Computer Research (2005)

    Google Scholar 

  34. Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: ICML, pp. 856–863 (2003)

    Google Scholar 

  35. Yu, L., Liu, H.: Redundancy based feature selection for microarray data. In: ACM SIGKDD 2004, pp. 737–742 (2004)

    Google Scholar 

  36. Zhou, J., Peng, H.: Automatic recognition and annotation of gene expression patterns of fly embryos. Bioinformatics 23(5), 589–596 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Auffarth, B., López, M., Cerquides, J. (2008). Hopfield Networks in Relevance and Redundancy Feature Selection Applied to Classification of Biomedical High-Resolution Micro-CT Images. In: Perner, P. (eds) Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. ICDM 2008. Lecture Notes in Computer Science(), vol 5077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70720-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70720-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70717-2

  • Online ISBN: 978-3-540-70720-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics