Skip to main content

Replication forks and replication checkpoints in repair

  • Chapter
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

  • 1823 Accesses

Abstract

Eukaryotic cells replicate their DNA and coordinate their response to DNA damage and replication blocks by activating appropriate repair processes, regulating recombination, chromatin assembly and chromosome partitioning. Replication forks stall at specific problematic genomic regions, and forks collapse unless protected by replication checkpoint proteins. These events have been associated with recombination and chromosomal rearrangements that lead to genomic instability and cancer development. The replication checkpoints, activated by the checkpoint signals generated by stalled forks, protect the stability of the fork until the replication can resume, regulate recombination pathways, and coordinate the mechanisms that promote replication restart and repair. Domain barriers make easier the topological problems posed by replicating DNA and confine the DNA lesions in manageable units. Here, we focus on the molecular mechanisms that control and promote the stability of replication forks and on the regulation of replication restart, and its coordination with chromatin structure and postreplicative repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Admire A, Shanks L, Danzl N, Wang M, Weier U, Stevens W, Hunt E, Weinert T (2006) Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20:159–173

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bachant J, Jessen SR, Kavanaugh SE, Fielding CS (2005) The yeast S phase checkpoint enables replicating chromosomes to bi-orient and restrain spindle extension during S phase distress. J Cell Biol 168:999–1012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benyajati C, Worcel A (1976) Isolation, characterization, and structure of the folded interphase genome of Drosophila melanogaster. Cell 9:393–407

    CAS  PubMed  Google Scholar 

  • Boddy MN, Russell P (2001) DNA replication checkpoint. Curr Biol 11:R953–956

    CAS  PubMed  Google Scholar 

  • Boddy MN, Shanahan P, McDonald WH, Lopez-Girona A, Noguchi E, Yates IJ, Russell P (2003) Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 23:5939–5946

    CAS  PubMed Central  PubMed  Google Scholar 

  • Branzei D, Foiani M (2005) The DNA damage response during DNA replication. Curr Opin Cell Biol 17:568–575

    CAS  PubMed  Google Scholar 

  • Branzei D, Seki M, Enomoto T (2004) Rad18/Rad5/Mms2-mediated polyubiquitination of PCNA is implicated in replication completion during replication stress. Genes Cells 9:1031–1042

    CAS  PubMed  Google Scholar 

  • Byun TS, Pacek M, Yee MC, Walter JC, Cimprich KA (2005) Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent check-point. Genes Dev 19:1040–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casper AM, Nghiem P, Arlt MF, Glover TW (2002) ATR regulates fragile site stability. Cell 111:779–789

    CAS  PubMed  Google Scholar 

  • Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedel-nikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A (2003) H2AX haploin-sufficiency modifies genomic stability and tumor susceptibility. Cell 114:371–383

    CAS  PubMed  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    CAS  PubMed  Google Scholar 

  • Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606

    CAS  PubMed  Google Scholar 

  • Chiolo I, Carotenuto W, Maffioletti G, Petrini JH, Foiani M, Liberi G (2005) Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. Mol Cell Biol 25:5738–5751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cobb JA, Bjergbaek L, Shimada K, Frei C, Gasser SM (2003) DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. Embo J 22:4325–4336

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cortez D, Glick G, Elledge SJ (2004) Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 101:10078–10083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cotta-Ramusino C, Fachinetti D, Lucca C, Doksani Y, Lopes M, Sogo J, Foiani M (2005) Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol Cell 17:153–159

    CAS  PubMed  Google Scholar 

  • Dalgaard JZ, Klar AJS (2000) swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell 102:745–751

    CAS  PubMed  Google Scholar 

  • Desany BA, Alcasabas AA, Bachant JB, Elledge SJ (1998) Recovery from DNA replicational stress is the essential function of the S-phase checkpoint pathway. Genes Dev 12:2956–2970

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deshpande AM, Newlon CS (1996) DNA replication fork pause sites dependent on transcription. Science 272:1030–1033

    CAS  PubMed  Google Scholar 

  • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC (2002) MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J Biol Chem 277:33049–33057

    CAS  PubMed  Google Scholar 

  • Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672

    CAS  PubMed  Google Scholar 

  • Emili A, Schieltz DM, Yates JR 3rd, Hartwell LH (2001) Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol Cell 7:13–20

    CAS  PubMed  Google Scholar 

  • Feng W, Collingwood D, Boeck ME, Fox LA, Alvino GM, Fangman WL, Raghuraman MK, Brewer BJ (2006) Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nat Cell Biol 8:148–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Celeste A, Nussenzweig A (2003) Focusing on foci: H2AX and the recruitment of DNA-damage response factors. Cell Cycle 2:426–427

    CAS  PubMed  Google Scholar 

  • Franco AA, Lam WM, Burgers PM, Kaufman PD (2005) Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19:1365–1375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freudenreich CH, Lahiri M (2004) Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3:1370–1374

    CAS  PubMed  Google Scholar 

  • Gaillard P-HL, Noguchi E, Shanahan P, Russell P (2003) The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Mol Cell 12:747–759

    CAS  PubMed  Google Scholar 

  • Giannattasio M, Lazzaro F, Plevani P, Muzi-Falconi M (2005) The DNA damage check-point response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280:9879–9886

    CAS  PubMed  Google Scholar 

  • Glover TW (2006) Common fragile sites. Cancer Lett 232:4–12

    CAS  PubMed  Google Scholar 

  • Goldfless SJ, Morag AS, Belisle KA, Sutera VA Jr, Lovett ST (2006) DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol Cell 21:595–604

    CAS  PubMed  Google Scholar 

  • Gunjan A, Verreault A (2003) A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115:537–549

    CAS  PubMed  Google Scholar 

  • Heller RC, Marians KJ (2006) Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439:557–562

    CAS  PubMed  Google Scholar 

  • Hirano Y, Sugimoto K (2006) ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break. Curr Biol 16:586–590

    CAS  PubMed  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    CAS  PubMed  Google Scholar 

  • Hu F, Alcasabas AA, Elledge SJ (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15:1061–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411

    CAS  PubMed  Google Scholar 

  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    CAS  PubMed  Google Scholar 

  • Kai M, Boddy MN, Russell P, Wang TS (2005) Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes Dev 19:919–932

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kai M, Wang TS (2003) Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev 17:64–76

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14:491–500

    CAS  PubMed  Google Scholar 

  • Kats ES, Albuquerque CP, Zhou H, Kolodner RD (2006) Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF-and CAF-I-defective mutants. Proc Natl Acad Sci USA 103:3710–3715

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamoto T, Araki K, Sonoda E, Yamashita YM, Harada K, Kikuchi K, Masutani C, Ha-naoka F, Nozaki K, Hashimoto N, Takeda S (2005) Dual roles for DNA polymerase eta in homologous DNA recombination and translesion DNA synthesis. Mol Cell 20:793–799

    CAS  PubMed  Google Scholar 

  • Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61:212–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kramer PR, Sinden RR (1997) Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry 36:3151–3158

    CAS  PubMed  Google Scholar 

  • Kraus E, Leung WY, Haber JE (2001) Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci USA 98:8255–8262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnan V, Nirantar S, Crasta K, Cheng AY, Surana U (2004) DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior. Mol Cell 16:687–700

    CAS  PubMed  Google Scholar 

  • Krogan NJ, Baetz K, Keogh MC, Datta N, Sawa C, Kwok TC, Thompson NJ, Davey MG, Pootoolal J, Hughes TR, Emili A, Buratowski S, Hieter P, Greenblatt JF (2004) Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc Natl Acad Sci USA 101:13513–13518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288:1643–1647

    CAS  PubMed  Google Scholar 

  • Lahiri M, Gustafson TL, Majors ER, Freudenreich CH (2004) Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol Cell 15:287–293

    CAS  PubMed  Google Scholar 

  • Lambert S, Watson A, Sheedy DM, Martin B, Carr AM (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121:689–702

    CAS  PubMed  Google Scholar 

  • Lawrence CW, Christensen RB (1979) Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol 139:866–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le S, Davis C, Konopka JB, Sternglanz R (1997) Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042

    CAS  PubMed  Google Scholar 

  • Lee JB, Hite RK, Hamdan SM, Xie XS, Richardson CC, van Oijen AM (2006) DNA pri-mase acts as a molecular brake in DNA replication. Nature 439:621–624

    CAS  PubMed  Google Scholar 

  • Lemoine FJ, Degtyareva NP, Lobachev K, Petes TD (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120:587–598

    CAS  PubMed  Google Scholar 

  • Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Linger J, Tyler JK (2005) The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 171:1513–1522

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lisby M, Barlow JH, Burgess RC, Rothstein R (2004) Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713

    CAS  PubMed  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Liberi G, Foiani M (2003) Branch migrating sister chromatid junctions form at replication origins through Rad51/Rad52-independent mechanisms. Mol Cell 12:1499–1510

    CAS  PubMed  Google Scholar 

  • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, Muzi-Falconi M, Newlon CS, Foiani M (2001) The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412:557–561

    CAS  PubMed  Google Scholar 

  • Lopes M, Foiani M, Sogo JM (2006) Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 21:15–27

    CAS  PubMed  Google Scholar 

  • Lucca C, Vanoli F, Cotta-Ramusino C, Pellicioli A, Liberi G, Haber J, Foiani M (2004) Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213

    CAS  PubMed  Google Scholar 

  • McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC (2005) Human DNA polymerase eta promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol Cell 20:783–792

    CAS  PubMed  Google Scholar 

  • Meister P, Taddei A, Vernis L, Poidevin M, Gasser SM, Baldacci G (2005) Temporal separation of replication and recombination requires the intra-S checkpoint. J Cell Biol 168:537–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Melo J, Toczyski D (2002) A unified view of the DNA-damage checkpoint. Curr Opin Cell Biol 14:237–245

    CAS  PubMed  Google Scholar 

  • Michael WM, Ott R, Fanning E, Newport J (2000) Activation of the DNA replication checkpoint through RNA synthesis by primase. Science 289:2133–2137

    CAS  PubMed  Google Scholar 

  • Morikawa H, Morishita T, Kawane S, Iwasaki H, Carr AM, Shinagawa H (2004) Rad62 protein functionally and physically associates with the Smc5/Smc6 protein complex and is required for chromosome integrity and recombination repair in fission yeast. Mol Cell Biol 24:9401–9413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Motegi A, Kuntz K, Majeed A, Smith S, Myung K (2006) Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 26:1424–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura TM, Du LL, Redon C, Russell P (2004) Histone H2A phosphorylation controls Crb2 recruitment at DNA breaks, maintains checkpoint arrest, and influences DNA repair in fission yeast. Mol Cell Biol 24:6215–6230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069–1081

    CAS  PubMed  Google Scholar 

  • Paulovich AG, Armour CD, Hartwell LH (1998) The Saccharomyces cerevisiae RAD9, RAD17, RAD24 and MEC3 genes are required for tolerating irreparable, ultraviolet-induced DNA damage. Genetics 150:75–93

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paulovich AG, Margulies RU, Garvik BM, Hartwell LH (1997) RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145:45–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pellicioli A, Foiani M (2005) Signal transduction: how Rad53 kinase is activated. Curr Biol 15:R769–771

    CAS  PubMed  Google Scholar 

  • Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M (1999) Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. Embo J 18:6561–6572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postow L, Crisona NJ, Peter BJ, Hardy CD, Cozzarelli NR (2001a) Topological challenges to DNA replication: conformations at the fork. Proc Natl Acad Sci USA 98:8219–8226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postow L, Hardy CD, Arsuaga J, Cozzarelli NR (2004) Topological domain structure of the Escherichia coli chromosome. Genes Dev 18:1766–1779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Postow L, Ullsperger C, Keller RW, Bustamante C, Vologodskii AV, Cozzarelli NR (2001b) Positive torsional strain causes the formation of a four-way junction at replication forks. J Biol Chem 276:2790–2796

    CAS  PubMed  Google Scholar 

  • Prakash L (1981) Characterization of postreplication repair in Saccharomyces cerevisiae and effects of rad6, rad18, rev3 and rad52 mutations. Mol Gen Genet 184:471–478

    CAS  PubMed  Google Scholar 

  • Rong L, Palladino F, Aguilera A, Klein HL (1991) The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127:75–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sabbioneda S, Minesinger BK, Giannattasio M, Plevani P, Muzi-Falconi M, Jinks-Robertson S (2005) The 9-1-1 checkpoint clamp physically interacts with polzeta and is partially required for spontaneous polzeta-dependent mutagenesis in Saccharomyces cerevisiae. J Biol Chem 280:38657–38665

    CAS  PubMed  Google Scholar 

  • Santocanale C, Diffley JFX (1998) A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615–618

    CAS  PubMed  Google Scholar 

  • Sharp JA, Fouts ET, Krawitz DC, Kaufman PD (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 11:463–473

    CAS  PubMed  Google Scholar 

  • Shen X, Ranallo R, Choi E, Wu C (2003) Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol Cell 12:147–155

    CAS  PubMed  Google Scholar 

  • Shimada K, Pasero P, Gasser SM (2002) ORC and the intra-S-phase checkpoint: a thresh-old regulates Rad53p activation in S phase. Genes Dev 16:3236–3252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, Tsurimoto T, Yo-shikawa H (1998) Regulation of DNA-replication origins during cell-cycle progression. Nature 395:618–621

    CAS  PubMed  Google Scholar 

  • Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    CAS  PubMed  Google Scholar 

  • Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS (2005) DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435:370–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stelter P, Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425:188–191

    CAS  PubMed  Google Scholar 

  • Stucki M, Jackson SP (2006) gammaH2AX and MDC1: Anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst)

    Google Scholar 

  • Takeuchi Y, Horiuchi T, Kobayashi T (2003) Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tercero JA, Diffley JF (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553–557

    CAS  PubMed  Google Scholar 

  • Tercero JA, Longhese MP, Diffley JF (2003) A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11:1323–1336

    CAS  PubMed  Google Scholar 

  • Trenz K, Smith E, Smith S, Costanzo V (2006) ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. Embo J 25:1764–1774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT (1999) The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560

    CAS  PubMed  Google Scholar 

  • Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10:373–385

    CAS  PubMed  Google Scholar 

  • Wang JC (1991) DNA topoisomerases: why so many? J Biol Chem 266:6659–6662

    CAS  PubMed  Google Scholar 

  • Wang X, Ira G, Tercero JA, Holmes AM, Diffley JF, Haber JE (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cere-visiae. Mol Cell Biol 24:6891–6899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M (2004) Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. Embo J 23:3886–3896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu L, Davies SL, Levitt NC, Hickson ID (2002) Potential role for the BLM helicase in re-combintional repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381

    Google Scholar 

  • Wysocki R, Javaheri A, Allard S, Sha F, Cote J, Kron SJ (2005) Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25:8430–8443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo HY, Shevchenko A, Shevchenko A, Dunphy WG (2004) Mcm2 is a direct substrate of ATM and ATR during DNA damage and DNA replication checkpoint responses. J Biol Chem 279:53353–53364

    CAS  PubMed  Google Scholar 

  • Zhang H, Lawrence CW (2005) The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc Natl Acad Sci USA 102:15954–15959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Wang TS (2004) A coordinated temporal interplay of nucleosome reorganization factor, sister chromatin cohesion factor, and DNA polymerase alpha facilitates DNA replication. Mol Cell Biol 24:9568–9579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Branzei, D., Foiani, M. (2007). Replication forks and replication checkpoints in repair. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71021-9_7

Download citation

Publish with us

Policies and ethics