Skip to main content

Super Low Loss Guided Wave Bands Using Split Ring Resonator-Rod Assemblies as Left-Handed Materials

  • Chapter
Physics of Negative Refraction and Negative Index Materials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 98))

  • 1689 Accesses

SRR metamaterial is used as a substrate material in a microstrip guided wave structure to determine what the effect is of a material with potentially excessive dispersion or loss or both. A Green’s function method readily incorporates the metamaterial permittivity and permeability tensor characteristics. Ab initio calculations are performed to obtain the dispersion diagrams of several complex propagation constant modes of the structure. Analytical analysis is done for the design and interpretation of the results, which demonstrate remarkable potential for realistic use in high frequency electronics while using the LHM for possible field reconfigurations. Bands of extremely low loss appear for several of the lowest order modes operating in the millimeter wavelength regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.M. Krowne, Phys Rev. Lett. 92, 053901 (2004).

    Article  ADS  Google Scholar 

  2. C.M. Krowne, arXiv.org/abs/cond-mat/0406219 (June 10, 2004).

    Google Scholar 

  3. C.M. Krowne, Phys Rev. Lett. 93, 053902 (2004) γs in this work were α = 0 and β (unrotated-stripline) = 2.30195 (nx = nz = 1, n = 200); β (rotated-stripline) = 2.24643 (nx = nz = 1, n = 200) and 2.24623 (nx = nz = 5, n = 500) all asymmetric basis set; β (rotated-microstrip) = 2.11530 asymmetric basis and. 2.11604 symmetric basis (nx = nz = 1, n = 200).

    Google Scholar 

  4. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Phys. Rev. B 65, 201104. (2002).

    Article  ADS  Google Scholar 

  5. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, Opt. Express 11, 746. (2003).

    Article  ADS  Google Scholar 

  6. S. Foteinopoulou, C.M. Soukoulos, Phys. Rev. B 67, 235107 (2003).

    Article  ADS  Google Scholar 

  7. P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003).

    Article  ADS  Google Scholar 

  8. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).

    Article  ADS  Google Scholar 

  9. P. Markos, I. Rousochatzakis, C.M. Soukoulis, Phys. Rev. E 66, 045601 (2002).

    Article  ADS  Google Scholar 

  10. N.C. Panoiu, R.M. Osgood Jr., Phys. Rev. E 68, 016611 (2003).

    Article  ADS  Google Scholar 

  11. J.O. Dimmock, Opt. Express 11, 2397 (2003).

    Article  ADS  Google Scholar 

  12. N.C. Panoiu, R.M. Osgood Jr., Opt. Commun. 223, 331 (2003).

    Article  ADS  Google Scholar 

  13. P. Markos, C.M. Soukoulis, Phys. Status Solidi (a) 197, 595 (2003).

    Article  ADS  Google Scholar 

  14. P. Markos, C.M. Soukoulis, Opt. Express 11, 649 (2003).

    Article  ADS  Google Scholar 

  15. R.B. Greegor, C.G. Parazzoli, K. Li, B.E.C. Koltenbah, M. Tanielian, Opt. Express 11, 688 (2003).

    Article  ADS  Google Scholar 

  16. P. Markos, C.M. Soukoulis, Phys. Rev. E 65, 036622 (2002).

    Article  ADS  Google Scholar 

  17. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104. (2002).

    Article  ADS  Google Scholar 

  18. L. Ran, J. Huangfu, H. Chen, Y. Li, X. Zhang, K. Chen, J.A. Kong, Phys. Rev. B 70, 073102 (2004).

    Article  ADS  Google Scholar 

  19. K.J. Webb, M. Yang, D.W. Ward, K.A. Nelson, Phys. Rev. E 70, 035602 (R). (2004).

    Article  ADS  Google Scholar 

  20. J. Pendry, A.J. Holden, W.J. Stewart, I. Young, Phys Rev. Lett. 76, 4773 (1996).

    Article  ADS  Google Scholar 

  21. 21. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999).

    Google Scholar 

  22. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1967).

    Google Scholar 

  23. C.M. Krowne, Int. J. Numer. Model.: Electr. Networks, Dev. Fields 12, 399. (1999).

    Article  MATH  Google Scholar 

  24. C.M. Krowne, IET Proc. Microwaves, Antennas & Propag. 1 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krowne, C.M. (2007). Super Low Loss Guided Wave Bands Using Split Ring Resonator-Rod Assemblies as Left-Handed Materials. In: Krowne, C.M., Zhang, Y. (eds) Physics of Negative Refraction and Negative Index Materials. Springer Series in Materials Science, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72132-1_10

Download citation

Publish with us

Policies and ethics