Skip to main content

Therapy of AML

  • Chapter
Acute Leukemias

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 2619 Accesses

Abstract

As with any disease, there are three general options for treatment of AML: supportive care only, standard therapy, and investigational therapy. Although, as discussed below, there are instances where the first option is preferable, the natural history of AML typically mitigates against it [1]. Since by definition there is much more information available about standard than about investigational therapy, most patients prefer the former, provided outcome with it is satisfactory. Hence, this review will begin by describing standard therapy, with emphasis on the factors that predict success following its use. Subsequent discussion will focus on investigational options of potential use for patients in whom results with standard therapy are poor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freireich EJ, Gehan EA, Sulma D, et al. (1961) The effect of chemotherapy on acute leukemia in the human. J Chron Dis 14: 593–608

    Article  PubMed  CAS  Google Scholar 

  2. Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) (2001) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press, Lyon

    Google Scholar 

  3. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103:620–625

    PubMed  CAS  Google Scholar 

  4. de Lima M, Strom S, Keating M, et al. (1997) Implications of potential cure in acute myelogenous leukemia: Development of subsequent cancer and return to work. Blood 90:4719–4724

    PubMed  Google Scholar 

  5. Buchner T, Urbanitz D, Hiddemann W, et al. (1985) Intensified induction and consolidation with or without maintenance chemotherapy for acute myeloid leukemia (AML): Two multicenter studies of the German AML Cooperative Group. J Clin Oncol 3:1583–1589

    PubMed  CAS  Google Scholar 

  6. Buchner T, Hiddemann W, Berdel B (2001) Requestioning the role of prolonged maintenance chemotherapy in AML: A randomized trial by the German AML Cooperative Group. Blood 98:462a

    Google Scholar 

  7. Goldstone AH, Burnett AK, Wheatley K, Smith AG, Hutchinson RM, Clark RE (2001) Attempts to improve treatment outcomes in AML in older patients: The results of the United Kingdom Medical Research Council AML11 trial. Blood 98:1302–1311

    Article  PubMed  CAS  Google Scholar 

  8. Charlson ME, Pompei P, Ales KL, et al. (1987) A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chr Dis 40:373–383

    Article  CAS  Google Scholar 

  9. Sorror MI, Maris MB, Storer B, et al. (2004) Comparing morbidity and mortality of HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative and myeloablative conditioning: Influence of pretransplantation comorbidities. Blood 104:961–968

    Article  PubMed  CAS  Google Scholar 

  10. Grimwade D, Walker H, Oliver F, et al. (1998) The importance of diagnostic cytogenetics on outcome in AML: Analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukemia Working Parties. Blood 92:2322–2333

    PubMed  CAS  Google Scholar 

  11. Grimwade D, Walker H, Harrison G, et al. (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia: Analysis of 1065 patients entered into the United Kingdom Medical Research Council AML 11 trial. Blood 98:1312–1320

    Article  PubMed  CAS  Google Scholar 

  12. Slovak ML, Kopecky KJ, Cassileth PA, et al. (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083

    PubMed  CAS  Google Scholar 

  13. Downing JR (2003) The core-binding factor leukemias: Lessons learned from murine models. Curr Opin Genet Dev 13:48–54

    Article  PubMed  CAS  Google Scholar 

  14. Bloomfield CD, Lawrence D, Byrd JC, et al. (1998) Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res 58:4173–4179

    PubMed  CAS  Google Scholar 

  15. Goldstone AH, Burnett AK, Avivi I, et al. (2002) Secondary AML has a worse outcome than de novo AML even taking into account cytogenetics and age. AML 10,11,12 MRC trials. Blood 100:88a (abstr)

    Google Scholar 

  16. Nguyen S, Leblanc T, Fenaux P, et al. (2002) A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): A survey of 161 cases from the French AML Intergroup. Blood 99:3517–3523

    Article  PubMed  CAS  Google Scholar 

  17. Schlenk RF, Benner A, Krauter J, et al. (2004) Individual patient data-based meta-analysis of patients aged 16–60 years with core binding factor acute myeloid leukemia: A survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol 15:3741–3750

    Article  Google Scholar 

  18. Marcucci G, Mrózek K, Ruppero AS, et al. (2005) Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): A Cancer and Leukemia Group B Study. J Clin Oncol 23:5705–5717

    Article  PubMed  Google Scholar 

  19. Care RS, Valk PJ, Goodeve AC, et al. (2003) Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 121:775–777

    Article  PubMed  CAS  Google Scholar 

  20. Carioli R, Beghini A, Grillo G, et al. (2006) Prognostic impact of c-KIT mutations in core binding factor leukemias: An Italian retrospective study. Blood 107:3463–3468

    Article  CAS  Google Scholar 

  21. Schnittger S, Kohl TM, Haferlach T, et al. (2006) KIT-D816 mutations in AML1-ETO positive AML are associated with impaired event-free and overall survival. Blood 107:1791–1799

    Article  PubMed  CAS  Google Scholar 

  22. Paschka P, Marcucci G, Ruppert A, et al. (2006) Mutations of KIT tyrosine kinase (TK) gene predict relapse in adult patients (pts) with core binding factor acute myeloid leukemia (CBF AML): A cancer and leukemia group B (CALGB) study. Proc Am Soc Clin Oncol 24:1 (abstr)

    Google Scholar 

  23. Yokota S, Kiyoi H, Nakao M, et al. (1997) Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies: A study on a large series of patients and cell lines. Leukemia 10:1605–1609

    Article  CAS  Google Scholar 

  24. Kottaridis PD, Gale RE, Frew ME, et al. (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: Analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98:1752–1759

    Article  PubMed  CAS  Google Scholar 

  25. Fröhling S, Schlenk RF, Breitruck J, et al. (2002) Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: A study of the AML Study Group Ulm. Blood 100:4372–4380

    Article  PubMed  CAS  Google Scholar 

  26. Thiede C, Steudel C, Mohr B, et al. (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: Association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  PubMed  CAS  Google Scholar 

  27. Whitman SP, Archer KJ, Feng L, et al. (2001) Absence of the wildtype allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: A cancer and leukemia group B study. Cancer Res 61:7233–7239

    PubMed  CAS  Google Scholar 

  28. Yamamoto Y, Kiyoi H, Nakano Y, et al. (2001) Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 97:2434–2439

    Article  PubMed  CAS  Google Scholar 

  29. Fröhling S, Scholl C, Gilliland DG, Levine RL (2005) Genetics of myeloid malignancies — Pathogenetic and clinical implications. J Clin Oncol 23:6285–6295

    Article  PubMed  CAS  Google Scholar 

  30. Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T (2005) Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: A meta-analysis. Leukemia 19:1345–1349

    Article  PubMed  CAS  Google Scholar 

  31. Mead A, Linch D, Hills R, et al. (2005) Favorable prognosis associated with FLT3 tyrosine kinase domain mutations in AML in contrast to the adverse outcome associated with internal tandem duplications. Blood 106:334 (abstr)

    Google Scholar 

  32. Falini B, Mecucci C, Tiacci E, et al. (2005) Gimema Acute Leukemia Working Party. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266

    Article  PubMed  CAS  Google Scholar 

  33. Döhner K, Schlenk RF, Habdank M, et al. (2005) Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics — Interaction with other gene mutations. Blood 106:3740–3746

    Article  PubMed  CAS  Google Scholar 

  34. Verhaak RGW, Goudswaard CS, van Putten W, et al. (2005) Mutations in nucleophosmin NPM1 in acute myeloid leukemia (AML): Association with other genetic abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106:3747–3754

    Article  PubMed  CAS  Google Scholar 

  35. Schnittger S, Schoch C, Kern W, et al. (2005) Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106: 3733–3739

    Article  PubMed  CAS  Google Scholar 

  36. Suzuki T, Kiyoi H, Ozeki K, et al. (2005) Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 106:2854–2861

    Article  PubMed  CAS  Google Scholar 

  37. Bowen DT, Frew ME, Hills R, et al. (2005) RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients < 60 yrs. Blood 106:2113–2119

    Article  PubMed  CAS  Google Scholar 

  38. Preudhomme C, Sagot C, Boissel N, et al. (2002) Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: A study from the Acute Leukemia French Association (ALFA). Blood 100:2717–2723

    Article  PubMed  CAS  Google Scholar 

  39. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, Meijer J, et al. (2003) Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediaterisk AML. Hematol J 4:31–40

    Article  PubMed  CAS  Google Scholar 

  40. Fröhling S, Schlenk RF, Stolze I, et al. (2004) CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: Prognostic relevance and analysis of cooperating mutations. J Clin Oncol 22:624–633

    Article  PubMed  CAS  Google Scholar 

  41. Caligiuri MA, Schichman SA, Strout MP, et al. (1994) Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res 54:370–373

    PubMed  CAS  Google Scholar 

  42. Caligiuri MA, Strout MP, Lawrence D, et al. (1998) Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 58:55–59

    PubMed  CAS  Google Scholar 

  43. Döhner K, Tobis K, Ulrich R, et al. (2002) PPrognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: A study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol 20:3254–3261

    Article  PubMed  CAS  Google Scholar 

  44. Steudel C, Wermke, Schaich M, et al. (2003) Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer 37:237–251

    Article  PubMed  CAS  Google Scholar 

  45. Baldus CD, Tanner SM, Ruppert AS, et al. (2003) BAALC expression predicts clinical outcome of de novo acute myeloid leukemia patients with normal cytogenetics: A Cancer and Leukemia Group B Study. Blood 102:1613–1618

    Article  PubMed  CAS  Google Scholar 

  46. Bienz M, Ludwig M, Mueller BU, et al. (2005) Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 11:1416–1424

    Article  PubMed  CAS  Google Scholar 

  47. Bullinger L, Valk PJM (2005) Gene expression profiling in acute myeloid leukemia. J Clin Oncol 23:6296–6305

    Article  PubMed  CAS  Google Scholar 

  48. Bullinger L, Döhner K, Bair E, et al. (2004) Use of gene expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 350:1605–1616

    Article  PubMed  CAS  Google Scholar 

  49. Valk PJ, Verhaak RG, Beijen MA, et al. (2004) Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350:1617–1628

    Article  PubMed  CAS  Google Scholar 

  50. Marcucci G, Radmacher MD, Ruppet AS, et al. (2005) Independent validation of prognostic relevance of a previously reported gene-expression signature in acute myeloid leukemia with normal cytogenetics: A Cancer and Leukemia Group B Study. Blood 106:755 (abstr)

    Google Scholar 

  51. Wheatley K, Burnett AK, Goldstone AH, et al. (1999) A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial. United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Br J Haematol 107:69–79

    Article  PubMed  CAS  Google Scholar 

  52. Cassileth PA, Harrington DP, Appelbaum FR, et al. (1998) Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med 339:1649–1656

    Article  PubMed  CAS  Google Scholar 

  53. Zittoun RA, Mandelli F, Willemze R, et al. (1995) Autologous or allogeneic bone marrow transplantation compared with intensive chemocherapy in AML. N Engl J Med 332:217–223

    Article  PubMed  CAS  Google Scholar 

  54. Burnett AK, Wheatley K, Goldstone AH, et al. (2002) The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: Results of the UK MRC AML 10 trial. Br J Haematol 118:385–400

    Article  PubMed  Google Scholar 

  55. Jourdan E, Boiron J, Dastugue N, et al. (2005) Early allogeneic stem-cell transplantation for young adults with acute myeloblastic leukemia in first complete remission: An intent-to-treat long-term analysis of the BGMT experience. J Clin Oncol 23: 7676–7684

    Article  PubMed  Google Scholar 

  56. Gale R, Hills R, Kottaridis PD, et al. (2005) No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): An analysis of 1135 patients excluding promyelocytic leukemia from the UK MRC AML10 and 12 trials. Blood 106:3658–3665

    Article  PubMed  CAS  Google Scholar 

  57. Berman E, Little C, Gee T, et al. (1992) Reasons that patients with AML do not undergo allogeneic bone marrow transplantation. N Engl J Med 326:156–160

    Article  PubMed  CAS  Google Scholar 

  58. Proctor SJ, Taylor PRA, Stark A, et al. (1995) Evaluation of the impact of allogeneic transplant in first remission on an unselected population of patients with AML aged 15–55 years. Leukemia 9:1246–1251

    PubMed  CAS  Google Scholar 

  59. Burnett AK, Goldstone AH, Stevens RM, et al. (1998) Randomized comparison of addition of autologous bone-marrow transplantation to intensive chemotherapy for acute myeloid leukaemia in first remission: Results of MRC AML 10 trial. UK Medical Research Council Adult and Children’s Leukaemia Working Parties. Lancet 351:700–708

    Article  PubMed  CAS  Google Scholar 

  60. Stone RM, Berg DT, George SL, et al. (1995) Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary AML. N Engl J Med 332:1671–1677

    Article  PubMed  CAS  Google Scholar 

  61. Godwin JE, Kopecky KJ, Head DR, et al. (1998) A double blind placebo controlled trial of G-CSF in elderly patients with previously untreated AML: A Southwest Oncology Group Study 9031. Blood 91:3607–3615

    PubMed  CAS  Google Scholar 

  62. Zittoun R, Suciu S, Mandelli F, et al. (1996) Granulocyte-macrophage colony-stimulating factor associated with induction treatment of AML: A randomized trial by the European Organization for Research and Treatment of Cancer Leukemia Cooperative Group. J Clin Oncol 14:2150–2159

    PubMed  CAS  Google Scholar 

  63. Lowenberg B, Boogaerts MA, Daenen SMGJ, et al. (1997) The value of different modalities of GM-CSF applied during or after induction therapy of AML. J Clin Oncol 15:3496–3506

    PubMed  CAS  Google Scholar 

  64. Lowenberg B, Suciu S, Archimbaud E, et al. (1997) Use of recombinant GM-CSF during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia: Final report of AML-21, a phase III randomised study of the EORTC-LCG and HOVON groups. Blood 90:2952–2961

    PubMed  CAS  Google Scholar 

  65. Lowenberg B, van Putten W, Theobald M, et al. (2003) Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med 349:743–752

    Article  PubMed  Google Scholar 

  66. Estey E, Smith T, Keating M, et al. (1989) Prediction of survival during induction therapy in patients with newly diagnosed AML. Leukemia 3:257–263

    PubMed  CAS  Google Scholar 

  67. Thall P, Estey E (2001) Graphical methods for evaluating covariate effects in the Cox model. In: Crowley J (ed) Handbook of statistics in clinical oncology. Marcel Dekker, New York, pp 411–433

    Google Scholar 

  68. Weick J, Kopecky K, Appelbaum F, et al. (1996) A randomised investigation of high-dose versus standard-dose cytosine arabinoside with daunorubicin in patients with previously untreated acute myeloid leukemia: A Southwest Oncology Group Study. Blood 88:2841–2851

    PubMed  CAS  Google Scholar 

  69. Bradstock KF, Matthews JP, Lowenthal RM, et al. (2005) A randomised trial of high-versus conventional-dose cytarabine in consolidation chemotherapy for adult de novo acute myeloid leukemia in first remission after induction therapy containing highdose cytarabine. Blood 105:481–488

    Article  PubMed  CAS  Google Scholar 

  70. Byrd JC, Dodge RK, Carroll A, et al. (1999) Patients with t(8;21)(q22; q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol 17:3767–3775

    PubMed  CAS  Google Scholar 

  71. Byrd JC, Ruppert AS, Mrózek K, et al. (2004) Repetitive cycles of high-dose cytarabine benefit patients with acute myeloid leukemia and inv(16)(p13q22) or t(16;16)(p13; q22): Results from CALGB 8461. J Clin Oncol 22:1087–1094

    Article  PubMed  CAS  Google Scholar 

  72. Rowe JM, Neuberg D, Friedenberg W, et al. (2004) A phase 3 study and of priming with GM-CSF in older adults with AML: A trial by the Eastern Cooperative Oncology Group. Blood 103:479–485

    Article  PubMed  CAS  Google Scholar 

  73. Anderson JE, Kopecky KJ, Willman CL, et al. (2002) Outcome after induction chemotherapy for older patients with AML is not improved with mitoxantrone and etoposide compared to daunorubicin and cytarabine: A Southwest Oncology Group Study. Blood 100:3869–3876

    Article  PubMed  CAS  Google Scholar 

  74. Van der Holt B, Lowenberg B, Burnett AK, et al. (2005) The value of the MDR1 reversal agent PSC-833 in addition to daunorubicin and cytarabine in the treatment of elderly patients with previously untreated AML in relation to MDR1 status at diagnosis. Blood 106:2646–2654

    Article  PubMed  CAS  Google Scholar 

  75. Estey EH, Thall PF, Giles FG, et al. (2002) Gemtuzumab ozogamycin with or without interleukin 11 in patients 65 years of age or older with untreated AML or high-risk MDS: Comparison with idarubicin plus high-dose continuous infusion cytosine arabinoside. Blood 99:4343–4349

    Article  PubMed  CAS  Google Scholar 

  76. Kahn SB, Begg CB, Mazza JJ, Bennett JM, Bonner H, Glick JH (1984) Full dose vs. attenuated daunorubicin, cytosine arabinoside and 6-thioguanine in the treatment of acute non-lymphocytic leukemia in the elderly. J Clin Oncol 2:865–870

    PubMed  CAS  Google Scholar 

  77. Amadori S, Suciu S, Stasi R, et al. (2005) Gemtuzumab ozogamycin as single-agent treatment for frail patients age 61 years of age and older with acute myeloid leukemia: Final results of AML-15B, a phase 2 study of the European Organization for Research and Treatment of Cancer and Gruppo Italiano Malattie Ematologiche dell’ Adulto Leukemia Groups. Leukemia 19: 1768–1773

    Article  PubMed  CAS  Google Scholar 

  78. National Comprehensive Cancer Network (NCCN) (2003) AML Panel. AML clinical practice guidelines. Journal of the NCCN, vol 1,4:520–539

    Google Scholar 

  79. Baer MR, George SL, Dodge RK, et al. (2002) Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Blood 100:1224–1232

    PubMed  CAS  Google Scholar 

  80. Sekeres MA, Stone RM, Zahrieh D, et al. (2004) Decision-making and quality of life in older adults with AML or advanced MDS. Leukemia 18:809–816

    Article  PubMed  CAS  Google Scholar 

  81. Estey E, Pierce S, Keating M (2000) Identification of a group of AML/MDS patients with a relatively favorable prognosis who have chromosome 5 and/or 7 abnormalities. Haematologica 85:246–249

    PubMed  CAS  Google Scholar 

  82. Bishop JF, Lowenthal RM, Joshua D, et al., for the Australian Leukemia Study Group (1990) Etoposide in acute nonlymphocytic leukemia. Blood 75:27–32

    PubMed  CAS  Google Scholar 

  83. Bishop J, Matthews J, Young G, et al. (1996) A randomised trial of high-dose cytarabine in induction in acute myeloid leukemia. Blood 87:1710–1717

    PubMed  CAS  Google Scholar 

  84. Estey E, Wang X-M, Thall P, et al. (2004) Plausibility of delaying induction therapy in untreated AML. Blood 104:879a (abstr)

    Google Scholar 

  85. Lowenberg B, Zittoun R, Kerkhofs H, et al. (1989) On the value of intensive remission induction therapy in elderly patients of 65 + years with AML: A randomized phase III study of the European Organization for Research and Treatment of Cancer Group. J Clin Oncol 7:1268–1274

    PubMed  CAS  Google Scholar 

  86. Burnett AK, Milligan D, Prentice AG, et al. (2004) Low dose ara-C versus hydroxyurea with or without retinoid in older patients not considered fit for intensive chemotherapy: The UK NCRI AML14 trial. Blood 104:872a (abstr)

    Google Scholar 

  87. Tilly H, Castaigne S, Bordessoule D, et al. (1990) Low dose cytarabine vs. intensive chemotherapy in the treatment of acute nonlymphocytic leukemia in the elderly. J Clin Oncol 8:272–279

    PubMed  CAS  Google Scholar 

  88. Lancet J, Gotlib J, Gojo I, et al. (2004) Tipifarnib (ZARNESTRATM) in previously untreated poor-risk AML of the elderly: Updated results of a multicenter phase 2 trial. Blood 104:874a (abstr)

    Google Scholar 

  89. Stone R, DeAngelo D, Klimek V, et al. (2005) Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 105:54–60

    Article  PubMed  CAS  Google Scholar 

  90. Smith D, Levis M, Beran M, et al. (2004) Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 103:3669–3676

    Article  PubMed  CAS  Google Scholar 

  91. Knapper S, Burnett A, Kell J, et al. (2004) A phase II trial of the FLT3 inhibitor CEP701 as first line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood 104:864a (abstr)

    Google Scholar 

  92. Attar E, DeAngelo D, Ballen K, et al. (2004) Phase I dose escalating trial of bortezomib (in combination with idarubicin and cytarabine in patients with acute myeloid leukemia. Blood 104: 1799a (abstr)

    Google Scholar 

  93. Kantarjian H, Ravandi F, O’Brien S, et al. (2004) Decitabine lowdose schedule (100 mg/m2/course) in myelodysplastic syndrome. Comparison of 3 different dose schedules. Blood 104: 1437a (abstr)

    Article  CAS  Google Scholar 

  94. Lubbert M, Ruter B, Schmid M, et al. (2005) Continued low-dose decitabine is an active first-line treatment of older AML patients: First results of a multicenter phase II study. Blood 106:527a (abstr)

    Google Scholar 

  95. Burnett A, Russell N, Kell J, Milligan D, Culligan D (2004) A phase 2 evaluation of single agent clofarabine as first line treatment for older patients with AML who are not considered fit for intensive chemotherapy. Blood 104:869a (abstr)

    Google Scholar 

  96. Giles F, Thomas D, Garcia-Manero G, et al. (2004) A phase I and pharmacokinetic study of VNP40101M, a novel sulfonylhydrazine alkylating agent, in patients with refractory leukemia. Clin Cancer Res 10:2908–2917

    Article  PubMed  CAS  Google Scholar 

  97. Marcucci G, Stock W, Dai G, et al. (2005) Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: Pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 23:3404–3411

    Article  PubMed  CAS  Google Scholar 

  98. Gerrard G, Payne E, Baker RJ, et al. (2004) Clinical effects and Pglycoprotein inhibition in patients with acute myeloid leukemia treated with zosuquidar trihydrochloride, daunorubicin and cytarabine. Haematologica 89:782–790

    PubMed  CAS  Google Scholar 

  99. Kell W, Burnett A, Chopra R, et al. (2003) A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 102: 4277–4283

    Article  PubMed  CAS  Google Scholar 

  100. De Angelo D, Stone RM, Durant S, et al. (2003) Gemtuzumab ozogamicin (Mylotarg) in combination with induction chemotherapy for the treatment of patients with de novo acute myeloid leukemia: Two age-specific phase 2 trials. Blood 102:100a (abstr)

    Google Scholar 

  101. Kolitz J, George S, Dodge R, et al. (2004) Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: Final induction results of cancer and leukemia group B study 9621. J Clin Oncol 22:4290–4301

    Article  PubMed  CAS  Google Scholar 

  102. Kolb HJ, Schattenberg A, Goldman JM, et al. (1995) Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. European Group for Blood and Marrow Transplantation Working Party Chronic Leukemia Blood 86:2041–2050

    CAS  Google Scholar 

  103. Molldrem JJ (2006) Vaccination for leukemia. Biol Blood Marrow Transplant 12:13–18

    Article  PubMed  Google Scholar 

  104. Qazilbash M, Wieder E, Rios R, et al. (2004) Vaccination with the PR1 leukemia-associated antigen can induce complete remission in patients with myeloid leukemia. Blood 104:259 (abstr)

    Google Scholar 

  105. Azuma T, Makita M, Ninomiya K, et al. (2002) Identification of a novel WT-1-derived peptide which induces human leukocyte antigen-A24-restricted anti-leukaemia cytotoxic T lymphocytes. Brit J Haematol 116:601–603

    Article  CAS  Google Scholar 

  106. Keilholz U, Scheibenbogen C, Letsch A, et al. (2005) WT1-peptide vaccination shows high immunogenicity and clinical activity in patients with acute myeloid leukemia. Blood 106:122a (abstr)

    Google Scholar 

  107. Tibes R, de Lima M, Estey E, Shahjahan R, Champlin R (2005) Nonmyeloablative HSCT in elderly AML/MDS patients in first CR. Proc Am Soc Clin Oncol ASCO abstract # 6655

    Google Scholar 

  108. Pagel J, Appelbaum F, Eary J (2006) 1311-anti-CD45 antibody plus busulfan and cyclophosphamide before allogeneic hematopoietic cell transplantation for treatment of acute myeloid leukemia in first remission. Blood 107:2184–2191

    Article  PubMed  CAS  Google Scholar 

  109. Sievers EL, Larson RA, Stadtmauer EA, et al. (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive AML in first relapse. J Clin Oncol 19:3244–3254

    PubMed  CAS  Google Scholar 

  110. Estey E, Garcia-Manero G, Giles F, Cortes J, O’Brien S, Kantarajian H (2005) Clinical relevance of CRp in untreated AML. Blood 106 (abstr)

    Google Scholar 

  111. Estey E (2000) Treatment of relapsed and refractory acute myeloid leukemia. Leukemia 14:476–479

    Article  PubMed  CAS  Google Scholar 

  112. Breems D, Van Putten W, Huijgens P, et al. (2005) Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol 23:1969–1978

    Article  PubMed  Google Scholar 

  113. Wong R, Shajahan M, Wang X, et al. (2005) Prognostic factors for outcomes of patients with refractory or relapsed acute myelogenous leukemia or myelodysplastic syndromes undergoing allogeneic progenitor cell transplantation. Biol Blood Marrow Transplant 11:108–114

    Article  PubMed  Google Scholar 

  114. Gorello P, Cazzaniga G, Alberti F, et al. (2006) Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia Mar 16 [Epub ahead of print]

    Google Scholar 

  115. Vidriales M, San Miguel J, Orfao A, et al. (2003) Minimal residual disease monitoring by flow cytometry. Best Pract Res Clin Haematol 16(4):599–612

    Article  PubMed  Google Scholar 

  116. Kern W, Voskova D, Schoch C, et al. (2004) Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 104:3078–3085

    Article  PubMed  CAS  Google Scholar 

  117. San Miguel J, Vidriales M, Lopez-Berges C, et al. (2001) Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 98:1746–1751

    Article  PubMed  CAS  Google Scholar 

  118. Estey E (2004) Clinical trials in AML of the elderly: Should we change our methodology? Leukemia 18:1772–1774

    Article  PubMed  CAS  Google Scholar 

  119. Estey E, Thall P (2003) New designs for phase 2 clinical trials. Blood 102:442–448

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Estey, E. (2008). Therapy of AML. In: Acute Leukemias. Hematologic Malignancies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72304-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72304-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72302-8

  • Online ISBN: 978-3-540-72304-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics