Skip to main content

Petroleum Generation

  • Chapter
  • First Online:
Fundamentals of Basin and Petroleum Systems Modeling

Modeling of geochemical processes encompasses the generation of petroleum and related maturation parameters, such as vitrinite reflectance, molecular biomarkers, and mineral diagenesis. The transformation and maturation of organic matter can be subdivided into three phases: diagenesis, catagenesis and metagenesis (Tissot and Welte, 1984). The term diagenesis is different from that of the rock types. The formation of petroleum and coal with typical depth and temperature intervals is illustrated in Fig. 4.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • M. A. Abu-Ali, J. G. Rudkiewicz, J. G. McGillivray, and F. Behar. Paleozoic petroleum system of central Saudi Arabia. GeoArabia, (4):321–336, 1999.

    Google Scholar 

  • H. Bahlburg and C Breitkreuz. Grundlagen der Geology. Elsevier GmbH, Muenchen, second edition, 2004.

    Google Scholar 

  • G. R. Beardsmore and J. P. Cull. Crustal Heat Flow. Cambridge University Press, 2001.

    Google Scholar 

  • F. Behar, M. Vandenbroucke, Y. Tang, and J. Espitalie. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation. Organic Geochemistry, 26: 321–339, 1997.

    Article  Google Scholar 

  • S. W. Benson. Thermodynamical Kinetics. Wiley, 1968.

    Google Scholar 

  • I. O. Blumenstein, R. di Primio, W. Rottke, B. M. Krooss, and R. Littke. Application of biodegradation modeling to a 3d–study in N. Germany, 2006.

    Google Scholar 

  • A. K. Burnham and R. L. Braun. Global kinetic analysis of complex materials. Energy and Fuels, 13: 1–22, 1999.

    Article  Google Scholar 

  • A. K. Burnham and J. J. Sweeney. A chemical kinetic model of vitrinite maturation and reflectance. Geochim. Cosmochim. Acta, 53: 2649–2657, 1989.

    Article  Google Scholar 

  • W. D. Carlson, R. A. Donelick, and R. A. Ketcham. Variablility of apatite fission–track annealing kinetics: I . E xperimental results. American Mineralogist, 84: 1213–1223, 1999.

    Google Scholar 

  • A. D. Carr. A vitrinite kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, 16: 355–377, 1999.

    Article  Google Scholar 

  • J. Chen, J. Fu, G. Sheng, D. Liu, and J. Zhang. Diamondoid hydrocarbon ratios: novel maturity indices for highly mature crude oils. Organic Geochemistry, 25: 179–190, 1996.

    Article  Google Scholar 

  • B. Cramer, E. Faber, P. Gerling, and B. M. Krooss. Reaction kinetics of stable carbon isotopes in natural gas – insights from dry, open system pyrolysis experiments. Energy and Fuels, 15 (15): 517–532, 2001.

    Article  Google Scholar 

  • R. di Primio and B. Horsfield. From petroleum–type organofacies to hydrocarbon phase prediction. AAPG Bulletin, 90: 1031–1058, 2006.

    Article  Google Scholar 

  • R. A. Donelick, R. A. Ketcham, and W. D. Carlson. Variablility of apatite fission–track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist, 84: 1224–1234, 1999.

    Google Scholar 

  • I. R. Duddy, P. F. Green, and G. M. Laslett. Thermal annealing of fission tracks in apatite 3. Variable temperature behaviour. Chemical Geology (Isotope Geoscience Section), 73: 25–38, 1988.

    Article  Google Scholar 

  • J. Espitalie, P. Ungerer, I. Irwin, and F. Marquis. Primary cracking of kerogens. experimenting and modelling C1, C2–C5, C6–C15 and C15+. Organic Geochemistry, 13: 893–899, 1988.

    Article  Google Scholar 

  • K. Gallagher, R. Brown, and C. Johnson. Fission track analysis and its applications to geological problems. Annu. Rev. Earth Planet Sci., 26: 519–572, 1998.

    Article  Google Scholar 

  • S. Glasstone, K.J. Laidler, and H.Eyring. The theory of rate processes. McGraw-Hill, 1941.

    Google Scholar 

  • J. C. Goff. Hydrocarbon generation and migration from jurassic source rocks in East Shetland Basin and Viking graben of the northern North Sea. J. Geol. Soc. Lond., 140: 445–474, 1983.

    Article  Google Scholar 

  • P. F. Green. The relationship between track shortening and fission track age reduction in apatite: Combined influences of inherent instability, annealing anisotropy, length bias and system calibration. Earth and Planetary Science Letters, 89: 335–352, 1988.

    Article  Google Scholar 

  • P. F. Green, I. R. Duddy, A. J. W. Gleadow, P.R. Tingate, and G. M. Laslett. Thermal annealing of fission tracks in apatite 1. A qualitative description. Chemical Geology (Isotope Geoscience Section), 59: 237–253, 1986.

    Article  Google Scholar 

  • P. F. Green, I. R. Duddy, A. J. W. Gleadow, and J. F. Lovering. Apatite fission–track analysis as a paleotemperature indicator for hydrocarbon exploration. In N. D. Naeser and T. H. McCulloh, editors, Thermal History of Sedimentary Basins, Methods and Case Histories, pages 181–195. Springer–Verlag, 1989.

    Google Scholar 

  • P. F. Green, I. R. Duddy, G. M. Laslett, A. J. W. Gleadow, and J. F. Lovering. Thermal annealing of fission tracks in apatite 1. Quantitative modelling techniques and extension to geological timescales. Chemical Geology (Isotope Geoscience Section), 79: 155–182, 1989.

    Article  Google Scholar 

  • R. W. Jones. Organic facies. In Academic Press, editor, Advances in Petroleum Geochemistry, pages 1–90. 1987.

    Google Scholar 

  • R. A. Ketcham. Personal communication, 2003.

    Google Scholar 

  • R. A. Ketcham, R. A. Donelick, and M. B. Donelick. Aftsolve: A program for multi–kinetic modeling of apatite fission–track data. Geological Materials Research, 2, No. 1 (electronic), 2000.

    Google Scholar 

  • B. M. Krooss and R. di Primio. Personal communication, 2007.

    Google Scholar 

  • S. Larter. Bugs, biodegradation and biochemistry of heavy oil. The 23rd International Meeting on Organic Geochemistry, Torquay, England, 2007.

    Google Scholar 

  • S. R. Larter. Some pragmatic perspectives in source rock geochemistry. Marine and Petroleum Geology, 5: 194–204, 1988.

    Article  Google Scholar 

  • G. M. Laslett, P. F. Green, I. R. Duddy, and A. J. W. Gleadow. Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chemical Geology (Isotope Geoscience Section), 65: 1–13, 1987.

    Article  Google Scholar 

  • A. S. Mackenzie and D. McKenzie. Isomerization and aromatization of hydrocarbons in sedimentary basins. Geological Magazine, 120: 417–470, 1983.

    Article  Google Scholar 

  • A. S. Pepper and P. J. Corvi. Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and Petroleum Geology, 12 (3): 291–319, 1995.

    Article  Google Scholar 

  • A. S. Pepper and P. J. Corvi. Simple kinetic models of petroleum formation. Part III: Modelling an open system. Marine and Petroleum Geology, 12 (4): 417–452, 1995.

    Article  Google Scholar 

  • A. S. Pepper and T. A. Dodd. Simple kinetic models of petroleum formation. Part II: oil – gas cracking. Marine and Petroleum Geology, 12 (3): 321–340, 1995.

    Article  Google Scholar 

  • K. E. Peters, C. C. Walters, and J. M. Moldowan. The Biomarker Guide, volume 1 and 2. Cambridge University Press, second edition, 2005.

    Google Scholar 

  • W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C++. Cambridge University Press, second edition, 2002.

    Google Scholar 

  • M. Radke and D. H. Welte. The methylphenanthrene index (MPI): A maturity parameter based on aromatic hydrocarbons. In M. Bjoroy et al., editor, Advances in Organic Geochemistry. Proceedings of the 10th International Meeting on Organic Geochemistry, University of Bergen, Norway, 14–18 September 1981, Wiley and Sons, 1983.

    Google Scholar 

  • C. S. Sajgo and J. Lefler. A reaction kinetic approach to the temperature–time history of sedimentary basins. Lecture Notes in Earth Sciences, 5: 123–151, 1986.

    Google Scholar 

  • J. J. Sweeney and A. K. Burnham. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bulletin, 74: 1559–1570, 1990.

    Google Scholar 

  • E. W. Tegelaar and R. A. Noble. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis–gas chromatography. Advances in Organic Geochemistry, 22 (3–5): 543–574, 1994.

    Article  Google Scholar 

  • B. P. Tissot and D. H. Welte. Petroleum Formation and Occurrence. Springer–Verlag, Berlin, second edition, 1984.

    Google Scholar 

  • P. Ungerer, J. Burrus, B. Doligez, P. Y. Chenet, and F. Bessis. Basin evaluation by integrated two–dimensional modeling of heat transfer, fluid flow, hydrocarbon gerneration and migration. AAPG Bulletin, 74: 309–335, 1990.

    Google Scholar 

  • D. W. van Krevelen. Coal. Typology–Chemistry–Physics–Constitution . Elsevier, 1961.

    Google Scholar 

  • M. Vandenbroucke, F. Behar, and L. J. Rudkiewicz. Kinetic modelling of petroleum formation and cracking: implications from high pressure, high temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30: 1105–1125, 1999.

    Article  Google Scholar 

  • D. W. Waples. Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. AAPG Bulletin, 64: 916–926, 1980.

    Google Scholar 

  • R. W. T. Wilkins, C. P. Buckingham, N. Sherwood, Russel N. J., M. Faiz, and Kurusingal. The current status of famm thermal maturaty technique for petroleum exploration in australia. Australian Petroleum Prduction and Exploration Asociation Journal, 38: 421–437, 1998.

    Google Scholar 

  • K. Zengler, H. H. Richnow, R. Rossellaó-Mora, W. Michaelis, and F. Widdel. Methane formation from long–chain alkanes by anaerobic microorganisms. Nature, 401: 266–269, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hantschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hantschel, T., Kauerauf, A.I. (2009). Petroleum Generation. In: Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72318-9_4

Download citation

Publish with us

Policies and ethics