Skip to main content

Towards a Virtual Echocardiographic Tutoring System

  • Conference paper
Visualization in Medicine and Life Sciences

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

Three integral components to build a tutoring system for echocardiography are presented. A mathematical time-varying model for vessel-representations of the human heart, based on cubic B-Splines and wavelets facilitating the extraction of arbitrarily detailed anatomical boundaries. A dedicated ontology framework the model is embedded into enabling efficient (meta-)data management as well as the automatic generation of (e.g. pathologic) heart instances based on standardized cardiac findings. A simulator generating virtual ultrasound images from instances of the heart transformed into isotropic tissue representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Barry, C. Allot, N. John, P. Mellor, P. Arundel, D. Thomson, and J.Waterton. Three dimensional freehand ultrasound: Image reconstruction and image analysis. Ultrasound in Med. & Biol.

    Google Scholar 

  2. Th. Berlage, Th. Fox, G. Grunst, and K.-J. Quast. Supporting Ultrasound Diagnosis Using An Animated 3D Model of the Heart. In (ICMCS’96), page 34, 1996.

    Google Scholar 

  3. R. Brooks. Simulation and Matching of Ultrasound with MRI. Technical Report 110247534, McGill Centre for Intelligent Mashines, April 2003.

    Google Scholar 

  4. M. Bertram, G. Reis, R.H. van Lengen, and H. Hagen. Non-manifol Mesh Extraction from Time-varying Segmented Volumes used for Modeling a Human Heart. Eurographics/IEEE TVCG Symposium on Visualizatzion, pages 1-10, 2005.

    Google Scholar 

  5. Deutsche Gesellschaft für Kardiologie-, Herz- und Kreislaufforschung. Qualitätsleitlinien in der Echokardiographie. Z Kardiol, 1997.

    Google Scholar 

  6. Deutsche Gesellschaft für Kardiologie-, Herz- und Kreislaufforschung. Eine standardisierte Dokumentationsstruktur zur Befunddokumentation in der chokardiographie. Z Kardiol, 2000.

    Google Scholar 

  7. T Elliot, D Downey, S Tong, C McLean, and A Fenster. Accuracy of prostate volume measurements in vitro using three-dimensional ultrasound. Acad. Radiology, 3:401406, 1996.

    Google Scholar 

  8. H.H. Ehricke. SONOSim3D: A Multimedia System for Sonography Simulation and Education with an Extensible Database. European Journal of Ultrasound, 7:225–300, 1998.

    Article  Google Scholar 

  9. D. H. Salesin E. J. Stollnitz, T. D. DeRose. Wavelets for Computer Graphics Theory and Applications. Morgan Kaufmann Publishers Inc.

    Google Scholar 

  10. A. Fenster, S. Tong, S. Sherebrin, D. Downey, and R. Rankin. Three-dimensional ultrasound imaging. Proc. SPIE, 2432:176184, 1995.

    Google Scholar 

  11. SONOFIT GmbH. SONOFit SG3 ultrasound training system, 2005. http://www.sonofit.com.

  12. H. Hagen, T. Bähr, R.H. van Lengen, and O. Schweikart. Interlinguar in medizinischen Informationssystemen. In Telemedizinführer Deutschland, Hrsg. A. Jäckel, 2001. Deutsches Medizinforum.

    Google Scholar 

  13. J.A. Jensen. Field: A Program for Simulating Ultrasound Systems. In 10th Nordic-Baltic Conference on Biomedical Imaging, 1996.

    Google Scholar 

  14. J.A. Jensen and S.I. Nikolov. Fast Simuation of Ultrasound Images. In IEEE International Ultrasonics Symposium, 2002.

    Google Scholar 

  15. K. Johnes. Modelling the Human Heart. www.uniservices.co.nz/ModellingtheHumanHeart.pdf.

  16. S. Köhn, R.H. van Lengen, G. Reis, M. Bertram, and H. Hagen. VES: Virtual Echocardiographic System. In IASTED VIIP’04, pages 465-471, 2004.

    Google Scholar 

  17. R. Ludwig and W. Lord. A. Finite. Element Formulation for the study of Ultrasonic NDT Systems. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control, 35:809–820, 1988.

    Article  Google Scholar 

  18. S. McRoy and S. Ali. Uniform Knowledge Representation for Language Processing in the B2 System. Natural Language Engeneering, 3(2):123–145, 1997. Cambridge University Press.

    Article  Google Scholar 

  19. J. Michael, J. L. V. Mejino, and C. Rosse. The role of definitions in biomedical concept representation. In American Medical Informatics Association Fall Symposium.

    Google Scholar 

  20. H. Maul, A. Scharf, P. Baier, M. Wuestemann, H.H. Guenter, G. Gebauer, and C. Sohn. Ultrasound Simulators: Experience with the SonoTrainer and Comparative Review of other Training Systems. Ultrasound in Obs. & Gyn., 24:581–585, 2004.

    Article  Google Scholar 

  21. N. Noy, R. Fergerson, and M. Musen. The knowledge model of protégé-2000: Combining interoperability and flexibility. In EKAW, pages 17-32, 2000.

    Google Scholar 

  22. N. Noy and D. McGuinness. Ontology development 101: A guide to creating your first ontology. Smi-report, Stanford Knowledge Systems Laboratory, March 2001.

    Google Scholar 

  23. U. Ngah, C. Ping, and S. Aziz. Knowledge-Based Intelligent Information and Engineering Systems, volume 3213/2004 of Lecture Notes in Computer Science, chapter Mammographic Image and Breast Ultrasound Based Expert System for Breast Diseases, pages 599-607. Springer Berlin/Heidelberg, 2004.

    Google Scholar 

  24. R. Prager, A. Gee, and L. Berman. Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound. Medical Image Analysis, 1999.

    Google Scholar 

  25. D. Pretorius, T. Nelson, and J. Jaffe. 3-dimensional sonographic analysis based on color flow doppler and gray scale image data - a preliminary report. Ultrasound in Medicine, 11:225232, 1992.

    Google Scholar 

  26. G. Reis, M. Betram, R.H. van Lengen, and H. Hagen. Adaptive Volume Construction from Ultrasound Images of a Human Heart. In Eurographics/IEEE TCVG Visualization Symposium Proceedings, pages 321-330, 2004.

    Google Scholar 

  27. G. Reis. Algorithmische Aspekte des 4dimensionalen Ultraschalls. PhD thesis, Technische Universität Kaiserslautern, 2005.

    Google Scholar 

  28. T. Roxborough and G. Nielson. Tetrahedron Based, Least Squares, Progressive Volume Models with Applications to Freehand Ultrasound Data. In Proceedings of IEEE Visualization, pages 93-100, 2000.

    Google Scholar 

  29. O. Schweikart and F. Metzger. Standardisierte Befunderfassung in der Echokardiographie mittels WWW: EchoBefundSystem. Z Kardiol 89, pages 176–185, 2000.

    Article  Google Scholar 

  30. K. Schwenk, G. Reis, and R.H. van Lengen. Real-time Artificial Ultra-sound, 2005. submitted to Elsevier Science.

    Google Scholar 

  31. F. Sachse, C. Werner, M. Stenroos, R. Schulte, P. Zerfass, and O. Dössel. Modeling the anatomy of the human heart using the cyrosec-tion images of the visible female dataset, 2000. Third Users Conference of the National Library of Medicine’s Visible Human Project.

    Google Scholar 

  32. S. Tong, D. Downey, H. Cardinal, and A. Fenster. A three-dimensional ultrasound prostate imaging system. Ultrasound in Medicine and Bi-ology, 22:73546, 1996.

    Google Scholar 

  33. G. Treece, A. Gee, R. Prager, C. Cash, and L. Berman. High Resolution Freehand 3D Ultrasound. Technical report, University of Cambridge, 2002.

    Google Scholar 

  34. R.H. van Lengen, S. Köhn, M. Bertram, B. Klein, and H. Hagen. Mit Ontologien visualisieren. Informatik Spektrum Sonderheft - Computer-graphik, March 2004.

    Google Scholar 

  35. R.F. Wagner, S.W. Smith, J.M. Sandrick, and H. Lopez. Statistics of Speckle in Ultrasound B-Scans. IEEE Trans. Son. Ultrason, 30:156–163, 1983.

    Google Scholar 

  36. M. Weidenbach, C. Wicks, S. Pieper, K.J. Quast, T. Fox, G. Grunst, and D.A. Redel. Augmented Reality Simulator for Training in Twodimensional Echocardiography. Computers and Biomedical Research, 33:11–22, 2000.

    Article  Google Scholar 

  37. Z. You, M. Lusk, R. Ludwig, and W. Lord. Numerical Simulation of Ultrasonic Wave Propagation in Anisotropic and Attenuative Solid Materials. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 38(5),1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this paper

Cite this paper

Reis, G., Lappé, B., Köhn, S., Weber, C., Bertram, M., Hagen, H. (2008). Towards a Virtual Echocardiographic Tutoring System. In: Linsen, L., Hagen, H., Hamann, B. (eds) Visualization in Medicine and Life Sciences. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72630-2_6

Download citation

Publish with us

Policies and ethics