Skip to main content

Chemical Inhibition Through Conformational Stabilization of Rho GTPase Effectors

  • Chapter
Protein-Protein Interactions as New Drug Targets

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

The Rho family of small GTP-binding proteins can activate a large number of downstream effectors and participate in a wide variety of biological processes, including cell motility, membrane trafficking, cell polarity, gene transcription, and mitosis. Specific small-molecule inhibitors of individual effector proteins downstream of Rho GTPases would be powerful tools to elucidate the contributions of particular effectors to these processes. In this chapter we describe the identification of a chemical inhibitor of a Rho effector and scaffolding protein neural-Wiskott-Aldrich syndrome protein (N-WASP), and the discovery of its novel mechanism of action, stabilization of N-WASP’s native autoinhibited conformation. Inasmuch as several other Rho GTPase effectors are regulated by autoinhibition, we discuss how this regulatory mechanism could be exploited by small molecules to develop highly specific inhibitors of other Rho GTPase effectors. We illustrate this concept with the Rac/Cdc42 effector p21-activated kinase (Pak1) and the Rho effector mammalian diaphanous-related formin (mDia1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK (1999) Structure of Cdc42 in complex with the GTPase-binding domain of the ‘Wiskott-Aldrich syndrome’ protein. Nature 399:379–383

    Article  PubMed  CAS  Google Scholar 

  • Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R (2000) Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275:12041–12050

    Article  PubMed  CAS  Google Scholar 

  • Alberts AS (2001) Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J Biol Chem 276:2824–2830

    Article  PubMed  CAS  Google Scholar 

  • Alberts AS, Bouquin N, Johnston LH, Treisman R (1998) Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem 273:8616–8622

    Article  PubMed  CAS  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  PubMed  CAS  Google Scholar 

  • Bagrodia S, Taylor SJ, Jordon KA, Van Aelst L, Cerione RA (1998) A novel regulator of p21-activated kinases. J Biol Chem 273:23633–23636

    Article  PubMed  CAS  Google Scholar 

  • Balasenthil S, Sahin AA, Barnes CJ, Wang RA, Pestell RG, Vadlamudi RK, Kumar R (2004) p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J Biol Chem 279:1422–1428

    Article  PubMed  CAS  Google Scholar 

  • Banerjee M, Worth D, Prowse DM, Nikolic M (2002) Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr Biol 12:1233–1239

    Article  PubMed  CAS  Google Scholar 

  • Baumeister MA, Rossman KL, Sondek J, Lemmon MA (2006) The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Biochem J 400:563–572

    Article  PubMed  CAS  Google Scholar 

  • Beeser A, Chernoff J (2005) Production and use of a cell permeable inhibitor of group A Paks (TAT-PID) to analyze signal transduction. Methods 37:203–207

    Article  PubMed  CAS  Google Scholar 

  • Bione S, Sala C, Manzini C, Arrigo G, Zuffardi O, Banfi S, Borsani G, Jonveaux P, Philippe C, Zuccotti M, Ballabio A, Toniolo D (1998) A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am J Hum Genet 62:533–541

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  PubMed  CAS  Google Scholar 

  • Bokoch GM, Wang Y, Bohl BP, Sells MA, Quilliam LA, Knaus UG (1996) Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J Biol Chem 271:25746–25749

    Article  PubMed  CAS  Google Scholar 

  • Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877

    Article  PubMed  CAS  Google Scholar 

  • Boureux A, Vignal E, Faure S, Fort P (2007) Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol 24:203–216

    Article  PubMed  CAS  Google Scholar 

  • Buchwald G, Hostinova E, Rudolph MG, Kraemer A, Sickmann A, Meyer HE, Scheffzek K, Wittinghofer A (2001) Conformational switch and role of phosphorylation in PAK activation. Mol Cell Biol 21:5179–5189

    Article  PubMed  CAS  Google Scholar 

  • Burdine L, Kodadek T (2004) Target identification in chemical genetics: the (often) missing link. Chem Biol 11:593–597

    Article  PubMed  CAS  Google Scholar 

  • Burke TJ, Loniello KR, Beebe JA, Ervin KM (2003) Development and application of fluorescence polarization assays in drug discovery. Comb Chem High Throughput Screen 6:183–194

    PubMed  CAS  Google Scholar 

  • Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO, Konicek S, Hom J, Marshall M, Graff JR (2004) Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10:3448–3456

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Vigneron S, Bernis C, Labbe JC, Lorca T (2006) Ubiquitin-mediated protein degradation in Xenopus egg extracts. Methods Mol Biol 322:223–234

    Article  PubMed  CAS  Google Scholar 

  • Chan RC, Forbes DI (2006) In vitro study of nuclear assembly and nuclear import using Xenopus egg extracts. Methods Mol Biol 322:289–300

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary A, King WG, Mattaliano MD, Frost JA, Diaz B, Morrison DK, Cobb MH, Marshall MS, Brugge JS (2000) Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Curr Biol 10:551–554

    Article  PubMed  CAS  Google Scholar 

  • Chen RH, Murray A (1997) Characterization of spindle assembly checkpoint in Xenopus egg extracts. Methods Enzymol 283:572–584

    PubMed  CAS  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  PubMed  CAS  Google Scholar 

  • Chong C, Tan L, Lim L, Manser E (2001) The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 276:17347–17353

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Walker SB, Pollard TD (1983) Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil 4:253–262

    Article  PubMed  CAS  Google Scholar 

  • Copeland JW, Treisman R (2002) The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol Biol Cell 13:4088–4099

    Article  PubMed  CAS  Google Scholar 

  • Cotteret S, Jaffer ZM, Beeser A, Chernoff J (2003) p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol Cell Biol 23:5526–5539

    Article  PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  • de la Barre AE, Robert-Nicoud M, Dimitrov S (1999) Assembly of mitotic chromosomes in Xenopus egg extract. Methods Mol Biol 119:219–229

    PubMed  Google Scholar 

  • Deming P, Kornbluth S (2006) Study of apoptosis in vitro using the Xenopus egg extract reconstitution system. Methods Mol Biol 322:379–393

    Article  PubMed  CAS  Google Scholar 

  • Eblen ST, Slack JK, Weber MJ, Catling AD (2002) Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 22:6023–6033

    Article  PubMed  CAS  Google Scholar 

  • Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1:253–259

    Article  PubMed  CAS  Google Scholar 

  • Fabian MA, Biggs WH 3rd, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lelias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) A small molecule-kinase interaction map for clinical kinase inhibitors. Nat Biotechnol 23:329–336

    Article  PubMed  CAS  Google Scholar 

  • Faix J, Grosse R (2006) Staying in shape with formins. Dev Cell 10:693–706

    Article  PubMed  CAS  Google Scholar 

  • Frost JA, Steen H, Shapiro P, Lewis T, Ahn N, Shaw PE, Cobb MH (1997) Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. Embo J 16:6426–6438

    Article  PubMed  CAS  Google Scholar 

  • Galisteo ML, Chernoff J, Su YC, Skolnik EY, Schlessinger J (1996) The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J Biol Chem 271:20997–21000

    Article  PubMed  CAS  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    PubMed  CAS  Google Scholar 

  • Gasman S, Kalaidzidis Y, Zerial M (2003) RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nat Cell Biol 5:195–204

    Article  PubMed  CAS  Google Scholar 

  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T (2006) PI(3,4,5) P3 and PI(4,5) P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–1461

    Article  PubMed  CAS  Google Scholar 

  • Higashida C, Miyoshi T, Fujita A, Oceguera-Yanez F, Monypenny J, Andou Y, Narumiya S, Watanabe N (2004) Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303:2007–2010

    Article  PubMed  CAS  Google Scholar 

  • Higgs HN (2005) Formin proteins: a domain-based approach. Trends Biochem Sci 30:342–353

    Article  PubMed  CAS  Google Scholar 

  • Higgs HN, Peterson KJ (2005) Phylogenetic analysis of the formin homology 2 domain. Mol Biol Cell 16:1–13

    Article  PubMed  CAS  Google Scholar 

  • Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, Kirschner MW (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118:203–216

    Article  PubMed  CAS  Google Scholar 

  • Ho HY, Rohatgi R, Lebensohn AM, Kirschner MW (2006) In vitro reconstitution of cdc42-mediated actin assembly using purified components. Methods Enzymol 406:174–190

    Article  PubMed  CAS  Google Scholar 

  • Hofmann C, Shepelev M, Chernoff J (2004) The genetics of Pak. J Cell Sci 117:4343–4354

    Article  PubMed  CAS  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  PubMed  CAS  Google Scholar 

  • Jaffer ZM, Chernoff J (2002) p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol 34:713–717

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Symons M, Campbell SL, Der CJ (2004) Molecular basis for Rho GTPase signaling specificity. Breast Cancer Res Treat 84:61–71

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Watanabe N, Morishima Y, Fujita A, Ishizaki T, Narumiya S (2001) Localization of a mammalian homolog of diaphanous, mDia1, to the mitotic spindle in HeLa cells. J Cell Sci 114:775–784

    PubMed  CAS  Google Scholar 

  • Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S, Marshall MS (1998) The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 396:180–183

    Article  PubMed  CAS  Google Scholar 

  • Kissil JL, Johnson KC, Eckman MS, Jacks T (2002) Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277:10394–10399

    Article  PubMed  CAS  Google Scholar 

  • Kissil JL, Wilker EW, Johnson KC, Eckman MS, Yaffe MB, Jacks T (2003) Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol Cell 12:841–849

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  PubMed  CAS  Google Scholar 

  • Knight ZA, Shokat KM (2007) Chemical genetics: where genetics and pharmacology meet. Cell 128:425–430

    Article  PubMed  CAS  Google Scholar 

  • Koh CG, Tan EJ, Manser E, Lim L (2002) The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr Biol 12:317–321

    Article  PubMed  CAS  Google Scholar 

  • Kouyama T, Mihashi K (1981) Fluorimetry study of N-(1-pyrenyl) iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem 114:33–38

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Vadlamudi RK (2002) Emerging functions of p21-activated kinases in human cancer cells. J Cell Physiol 193:133–144

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6:459–471

    Article  PubMed  CAS  Google Scholar 

  • Lammers M, Rose R, Scrima A, Wittinghofer A (2005) The regulation of mDia1 by autoinhibition and its release by Rho*GTP. Embo J 24:4176–4187

    Article  PubMed  CAS  Google Scholar 

  • Lebensohn AM, Ma L, Ho HY, Kirschner MW (2006) Cdc42 and PI(4,5) P2-induced actin assembly in Xenopus egg extracts. Methods Enzymol 406:156–173

    Article  PubMed  CAS  Google Scholar 

  • Lechler T, Jonsdottir GA, Klee SK, Pellman D, Li R (2001) A two-tiered mechanism by which Cdc42 controls the localization and activation of an Arp2/3-activating motor complex in yeast. J Cell Biol 155:261–270

    Article  PubMed  CAS  Google Scholar 

  • Lei M, Lu W, Meng W, Parrini MC, Eck MJ, Mayer BJ, Harrison SC (2000) Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387–397

    Article  PubMed  CAS  Google Scholar 

  • Leisner TM, Liu M, Jaffer ZM, Chernoff J, Parise LV (2005) Essential role of CIB1 in regulating PAK1 activation and cell migration. J Cell Biol 170:465–476

    Article  PubMed  CAS  Google Scholar 

  • Li F, Higgs HN (2003) The mouse Formin mDia1 is a potent actin nucleation factor regulated by autoinhibition. Curr Biol 13:1335–1340

    Article  PubMed  CAS  Google Scholar 

  • Li F, Higgs HN (2005) Dissecting requirements for auto-inhibition of actin nucleation by the formin, mDia1. J Biol Chem 280:6986–6992

    Article  PubMed  CAS  Google Scholar 

  • Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J, Mandal M, Kumar R (2002) p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3:767–773

    Article  PubMed  CAS  Google Scholar 

  • Lu W, Katz S, Gupta R, Mayer BJ (1997) Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr Biol 7:85–94

    Article  PubMed  CAS  Google Scholar 

  • Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1315–1318

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Cantley LC, Janmey PA, Kirschner MW (1998a) Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J Cell Biol 140:1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Rohatgi R, Kirschner MW (1998b) The Arp2/3 complex mediates actin polymerization induced by the small GTP-binding protein Cdc42. Proc Natl Acad Sci USA 95:15362–15367

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Atkinson SJ, Ampe C, Vandekerckhove J, Pollard TD (1994) Purification of a cortical complex containing two unconventional actins from Acanthamoeba by affinity chromatography on profilin-agarose. J Cell Biol 127:107–115

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao ZS, Lim L (1994) A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46

    Article  PubMed  CAS  Google Scholar 

  • Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T, Lim L (1997) Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17:1129–1143

    PubMed  CAS  Google Scholar 

  • Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L, Tan I, Leung T, Lim L (1998) PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1:183–192

    Article  PubMed  CAS  Google Scholar 

  • Maroney AC, Finn JP, Connors TJ, Durkin JT, Angeles T, Gessner G, Xu Z, Meyer SL, Savage MJ, Greene LA, Scott RW, Vaught JL (2001) Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J Biol Chem 276:25302–25308

    Article  PubMed  CAS  Google Scholar 

  • Martin-Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–397

    Article  PubMed  CAS  Google Scholar 

  • Meller N, Merlot S, Guda C (2005) CZH proteins: a new family of Rho-GEFs. J Cell Sci 118:4937–4946

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Miura K, Takenawa T (1996) N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J 15:5326–5335

    PubMed  Google Scholar 

  • Millard TH, Sharp SJ, Machesky LM (2004) Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380:1–17

    Article  PubMed  CAS  Google Scholar 

  • Moon KH, Zhao X, Yu YT (2006) Pre-mRNA splicing in the nuclei of Xenopus oocytes. Methods Mol Biol 322:149–163

    Article  PubMed  CAS  Google Scholar 

  • Nheu TV, He H, Hirokawa Y, Tamaki K, Florin L, Schmitz ML, Suzuki-Takahashi I, Jorissen RN, Burgess AW, Nishimura S, Wood J, Maruta H (2002) The K252a derivatives, inhibitors for the PAK/MLK kinase family selectively block the growth of RAS transformants. Cancer J 8:328–336

    Article  PubMed  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  • Otomo T, Otomo C, Tomchick DR, Machius M, Rosen MK (2005) Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 18:273–281

    Article  PubMed  CAS  Google Scholar 

  • Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5:297–306

    Article  PubMed  CAS  Google Scholar 

  • Papayannopoulos V, Co C, Prehoda KE, Snapper S, Taunton J, Lim WA (2005) A polybasic motif allows N-WASP to act as a sensor of PIP(2) density. Mol Cell 17:181–191

    Article  PubMed  CAS  Google Scholar 

  • Parrini MC, Lei M, Harrison SC, Mayer BJ (2002) Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9:73–83

    Article  PubMed  CAS  Google Scholar 

  • Pelish HE, Westwood NJ, Feng Y, Kirchhausen T, Shair MD (2001) Use of biomimetic diversity-oriented synthesis to discover galanthamine-like molecules with biological properties beyond those of the natural product. J Am Chem Soc 123:6740–6741

    Article  PubMed  CAS  Google Scholar 

  • Pelish HE, Peterson JR, Salvarezza SB, Rodriguez-Boulan E, Chen JL, Stamnes M, Macia E, Feng Y, Shair MD, Kirchhausen T (2006) Secramine inhibits Cdc42-dependent functions in cells and Cdc42 activation in vitro. Nat Chem Biol 2:39–46

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Wallar BJ, Flanders A, Swiatek PJ, Alberts AS (2003) Disruption of the Diaphanous-related formin Drf1 gene encoding mDia1 reveals a role for Drf3 as an effector for Cdc42. Curr Biol 13:534–545

    Article  PubMed  CAS  Google Scholar 

  • Petersen J, Nielsen O, Egel R, Hagan IM (1998) FH3, a domain found in formins, targets the fission yeast formin Fus1 to the projection tip during conjugation. J Cell Biol 141:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Peterson FC, Deng Q, Zettl M, Prehoda KE, Lim WA, Way M, Volkman BF (2007) Multiple WASP-interacting protein recognition motifs are required for a functional interaction with N-WASP. J Biol Chem 282:8446–8453

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Golemis EA (2004) Autoinhibited proteins as promising drug targets. J Cell Biochem 93:68–73

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Mitchison TJ (2002) Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol 9:1275–1285

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Lokey RS, Mitchison TJ, Kirschner MW (2001) A chemical inhibitor of N-WASP reveals a new mechanism for targeting protein interactions. Proc Natl Acad Sci USA 98:10624–10629

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfelli O, Kirschner MW, Rosen MK (2004) Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol 11:747–755

    Article  PubMed  CAS  Google Scholar 

  • Peterson JR, Lebensohn AM, Pelish HE, Kirschner MW (2006) Biochemical suppression of small-molecule inhibitors: a strategy to identify inhibitor targets and signaling pathway components. Chem Biol 13:443–452

    Article  PubMed  CAS  Google Scholar 

  • Prehoda KE, Scott JA, Mullins RD, Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290:801–806

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615

    Article  PubMed  CAS  Google Scholar 

  • Quinlan ME, Heuser JE, Kerkhoff E, Mullins RD (2005) Drosophila Spire is an actin nucleation factor. Nature 433:382–388

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Rivero F, Muramoto T, Meyer AK, Urushihara H, Uyeda TQ, Kitayama C (2005) A comparative sequence analysis reveals a common GBD/FH3-FH1-FH2-DAD architecture in formins from Dictyostelium, fungi and metazoa. BMC Genomics 6:28

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4, 5-bisphosphate. J Cell Biol 150:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ (2001) Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276:26448–26452

    Article  PubMed  CAS  Google Scholar 

  • Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A (2005) Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435:513–518

    Article  PubMed  CAS  Google Scholar 

  • Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180

    Article  PubMed  CAS  Google Scholar 

  • Rundle DR, Gorbsky G, Tsiokas L (2004) PKD2 interacts and co-localizes with mDia1 to mitotic spindles of dividing cells: role of mDia1 IN PKD2 localization to mitotic spindles. J Biol Chem 279:29728–29739

    Article  PubMed  CAS  Google Scholar 

  • Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142

    Article  PubMed  Google Scholar 

  • Salic A, Lee E, Mayer L, Kirschner MW (2000) Control of beta-catenin stability: reconstitution of the cytoplasmic steps of the wnt pathway in Xenopus egg extracts. Mol Cell 5:523–532

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135:169–179

    Article  PubMed  CAS  Google Scholar 

  • Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T, King W, Wilber K, Mihatsch MJ, Moch H (2003) Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5–q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 163:985–992

    PubMed  CAS  Google Scholar 

  • Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I, O’Bryan JP, Gupta V, Ratner N, Der CJ, Jacks T, McClatchey AI (2001) The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1:63–72

    Article  PubMed  CAS  Google Scholar 

  • Shennan KI (2006) Xenopus egg extracts: a model system to study proprotein convertases. Methods Mol Biol 322:199–212

    Article  PubMed  CAS  Google Scholar 

  • Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB, Marshall MS, Weber MJ, Parsons JT, Catling AD (2003) PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 162:281–291

    Article  PubMed  CAS  Google Scholar 

  • Sokac AM, Co C, Taunton J, Bement W (2003) Cdc42-dependent actin polymerization during compensatory endocytosis in Xenopus eggs. Nat Cell Biol 5:727–732

    Article  PubMed  CAS  Google Scholar 

  • Stockwell BR (2000) Chemical genetics: ligand-based discovery of gene function. Nat Rev Genet 1:116–125

    Article  PubMed  CAS  Google Scholar 

  • Stradal TE, Scita G (2006) Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol 18:4–10

    Article  PubMed  CAS  Google Scholar 

  • Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48

    Article  PubMed  CAS  Google Scholar 

  • Talukder AH, Meng Q, Kumar R (2006) CRIPak, a novel endogenous Pak1 inhibitor. Oncogene 25:1311–1319

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J, Field J (1997) Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17:4454–4464

    PubMed  CAS  Google Scholar 

  • Tang Y, Marwaha S, Rutkowski JL, Tennekoon GI, Phillips PC, Field J (1998) A role for Pak protein kinases in Schwann cell transformation. Proc Natl Acad Sci USA 95:5139–5144

    Article  PubMed  CAS  Google Scholar 

  • Tang DD, Bai Y, Gunst SJ (2005) Silencing of p21-activated kinase attenuates vimentin phosphorylation on Ser-56 and reorientation of the vimentin network during stimulation of smooth muscle cells by 5-hydroxytryptamine. Biochem J 388:773–783

    Article  PubMed  CAS  Google Scholar 

  • Taunton J, Rowning BA, Coughlin ML, Wu M, Moon RT, Mitchison TJ, Larabell CA (2000) Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J Cell Biol 148:519–530

    Article  PubMed  CAS  Google Scholar 

  • Tochtrop GP, King RW (2004) Target identification strategies in chemical genetics. Comb Chem High Throughput Screen 7:677–688

    PubMed  CAS  Google Scholar 

  • Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS (2000) Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol Cell 5:13–25

    Article  PubMed  CAS  Google Scholar 

  • Tran NH, Frost JA (2003) Phosphorylation of Raf-1 by p21-activated kinase 1 and Src regulates Raf-1 autoinhibition. J Biol Chem 278:11221–11226

    Article  PubMed  CAS  Google Scholar 

  • Tu H, Wigler M (1999) Genetic evidence for Pak1 autoinhibition and its release by Cdc42. Mol Cell Biol 19:602–611

    PubMed  CAS  Google Scholar 

  • Tutter AV, Walter JC (2006) Chromosomal DNA replication in a soluble cell-free system derived from Xenopus eggs. Methods Mol Biol 322:121–137

    Article  PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R (2000) Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275:36238–36244

    Article  PubMed  CAS  Google Scholar 

  • Vartiainen MK, Machesky LM (2004) The WASP-Arp2/3 pathway: genetic insights. Curr Opin Cell Biol 16:174–181

    Article  PubMed  CAS  Google Scholar 

  • Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA (2002) Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Cell 111:565–576

    Article  PubMed  CAS  Google Scholar 

  • Wallar BJ, Stropich BN, Schoenherr JA, Holman HA, Kitchen SM, Alberts AS (2006) The basic region of the diaphanous-autoregulatory domain (DAD) is required for autoregulatory interactions with the diaphanous-related formin inhibitory domain. J Biol Chem 281:4300–4307

    Article  PubMed  CAS  Google Scholar 

  • Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R (2006) PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25:2931–2936

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16:3044–3056

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1:136–143

    Article  PubMed  CAS  Google Scholar 

  • Wen Y, Eng CH, Schmoranzer J, Cabrera-Poch N, Morris EJ, Chen M, Wallar BJ, Alberts AS, Gundersen GG (2004) EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat Cell Biol 6:820–830

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Frost JA (2006) Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem Biophys Res Commun 351:328–335

    Article  PubMed  CAS  Google Scholar 

  • Xia C, Ma W, Stafford LJ, Marcus S, Xiong WC, Liu M (2001) Regulation of the p21-activated kinase (PAK) by a human Gbeta-like WD-repeat protein, hPIP1. Proc Natl Acad Sci USA 98:6174–6179

    Article  PubMed  CAS  Google Scholar 

  • Xiao GH, Beeser A, Chernoff J, Testa JR (2002) p21-activated kinase links Rac/Cdc42 signaling to merlin. J Biol Chem 277:883–886

    Article  PubMed  CAS  Google Scholar 

  • Xiao GH, Gallagher R, Shetler J, Skele K, Altomare DA, Pestell RG, Jhanwar S, Testa JR (2005) The NF2 tumor suppressor gene product, merlin, inhibits cell proliferation and cell cycle progression by repressing cyclin D1 expression. Mol Cell Biol 25:2384–2394

    Article  PubMed  CAS  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    Article  PubMed  CAS  Google Scholar 

  • Yasuda S, Oceguera-Yanez F, Kato T, Okamoto M, Yonemura S, Terada Y, Ishizaki T, Narumiya S (2004) Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature 428:767–771

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka K, Foletta V, Bernard O, Itoh K (2003) A role for LIM kinase in cancer invasion. Proc Natl Acad Sci USA 100:7247–7252

    Article  PubMed  CAS  Google Scholar 

  • Zang M, Hayne C, Luo Z (2002) Interaction between active Pak1 and Raf-1 is necessary for phosphorylation and activation of Raf-1. J Biol Chem 277:4395–4405

    Article  PubMed  CAS  Google Scholar 

  • Zenke FT, King CC, Bohl BP, Bokoch GM (1999) Identification of a central phosphorylation site in p21-activated kinase regulating autoinhibition and kinase activity. J Biol Chem 274:32565–32573

    Article  PubMed  CAS  Google Scholar 

  • Zhan Q, Ge Q, Ohira T, Van Dyke T, Badwey JA (2003) p21-activated kinase 2 in neutrophils can be regulated by phosphorylation at multiple sites and by a variety of protein phosphatases. J Immunol 171:3785–3793

    PubMed  CAS  Google Scholar 

  • Zhao ZS, Manser E, Chen XQ, Chong C, Leung T, Lim L (1998) A conserved negative regulatory region in alphaPAK: inhibition of PAK kinases reveals their morphological roles downstream of Cdc42 and Rac1. Mol Cell Biol 18:2153–2163

    PubMed  CAS  Google Scholar 

  • Zhao ZS, Lim JP, Ng YW, Lim L, Manser E (2005) The GIT-associated kinase PAK targets to the centrosome and regulates Aurora-A. Mol Cell 20:237–249

    Article  PubMed  CAS  Google Scholar 

  • Zheng Y, Glaven JA, Wu WJ, Cerione RA (1996) Phosphatidylinositol 4,5-bisphosphate provides an alternative to guanine nucleotide exchange factors by stimulating the dissociation of GDP from Cdc42Hs. J Biol Chem 271:23815–23819

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deacon, S.W., Peterson, J.R. (2008). Chemical Inhibition Through Conformational Stabilization of Rho GTPase Effectors. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_18

Download citation

Publish with us

Policies and ethics