Skip to main content

An Efficient Implementation for the 0-1 Multi-objective Knapsack Problem

  • Conference paper
Experimental Algorithms (WEA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4525))

Included in the following conference series:

Abstract

In this paper, we present an approach, based on dynamic programming, for solving 0-1 multi-objective knapsack problems. The main idea of the approach relies on the use of several complementary dominance relations to discard partial solutions that cannot lead to new non-dominated criterion vectors. This way, we obtain an efficient method that outperforms the existing methods both in terms of CPU time and size of solved instances. Extensive numerical experiments on various types of instances are reported. A comparison with other exact methods is also performed. In addition, for the first time to our knowledge, we present experiments in the three-objective case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ehrgott, M.: Multicriteria optimization. LNEMS, vol. 491. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  2. Martello, S., Toth, P.: Knapsack Problems. Wiley, New York (1990)

    MATH  Google Scholar 

  3. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  4. Rosenblatt, M.J., Sinuany-Stern, Z.: Generating the discrete efficient frontier to the capital budgeting problem. Operations Research 37(3), 384–394 (1989)

    MATH  Google Scholar 

  5. Kostreva, M.M., Ogryczak, W., Tonkyn, D.W.: Relocation problems arising in conservation biology. Comp. and Math. with App. 37, 135–150 (1999)

    Article  MATH  Google Scholar 

  6. Jenkins, L.: A bicriteria knapsack program for planning remediation of contaminated lightstation sites. Eur. J. Oper. Res. 140, 427–433 (2002)

    Article  MATH  Google Scholar 

  7. Klamroth, K., Wiecek, M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics 47(1), 57–76 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Visée, M., Teghem, J., Pirlot, M., Ulungu, E.: Two-phases method and branch and bound procedures to solve the bi-objective knapsack problem. Journal of Global Optimization 12, 139–155 (1998)

    Article  MATH  Google Scholar 

  9. Captivo, M.E., Climaco, J., Figueira, J., Martins, E., Santos, J.L.: Solving bicriteria 0-1 knapsack problems using a labeling algorithm. Computers and Operations Research 30, 1865–1886 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Weignartner, H., Ness, D.: Methods for the solution of the multi-dimensional 0/1 knapsack problem. Operations Research 15(1), 83–103 (1967)

    Google Scholar 

  11. Nemhauser, G., Ullmann, Z.: Discrete dynamic programming and capital allocation. Management Science 15(9), 494–505 (1969)

    Article  MathSciNet  Google Scholar 

  12. Ehrgott, M., Gandibleux, X.: Bound sets for biobjective combinatorial optimization problems. To appear in Computers and Operations Research (2007)

    Google Scholar 

  13. Kung, H., Luccio, F., Preparata, F.: On finding the maxima of set of vectors. J. Assoc. Comput. Mach. 22(4), 469–476 (1975)

    MATH  MathSciNet  Google Scholar 

  14. Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, London, UK (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Camil Demetrescu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Bazgan, C., Hugot, H., Vanderpooten, D. (2007). An Efficient Implementation for the 0-1 Multi-objective Knapsack Problem. In: Demetrescu, C. (eds) Experimental Algorithms. WEA 2007. Lecture Notes in Computer Science, vol 4525. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72845-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72845-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72844-3

  • Online ISBN: 978-3-540-72845-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics