Skip to main content

Critical Mars mission elements

  • Chapter
Human Missions to Mars

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 1192 Accesses

Abstract

As we have seen in Chapter 3, the problems involved in launching, transporting, landing, and returning large masses from Mars present formidable challenges. However, other challenges exist in sending humans to Mars. These include life support (consumables and recycling), mitigation of radiation, and low-gravity effects, providing abort options, utilization of indigenous planetary resources, as well as human factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See: http://www.ingentaconnect.com/content/asma/asem/2005/00000076/A00106s1/art00012

  2. See: http://www.marsjournal.org/contents/2006/0005/files/rapp_mars_2006_0005.pdf

  3. ISRU Capability Roadmap Team Final Report, J. Sanders (JSC) and M. Duke (Colorado School of Mines) (eds.), Informal Report, March 2005.

    Google Scholar 

  4. http://www.marsjournal.org/contents/2006/0004/files/rapp_mars_2006_0004.pdf

  5. “Spectrum of Complex DNA Damages Depends on the Incident Radiation,” M. Hada and B. M. Sutherland, Radiation Res., Vol. 165, 223–230, 2006, doi:10.1667/RR3498.1

    Article  Google Scholar 

  6. Managing Lunar, Radiation Risks, Part I: Cancer, Shielding Effectiveness, Francis A. Cucinotta, Myung-Hee Y. Kim, and Lei Ren, NASA/TP-2005-213164, 2005.

    Google Scholar 

  7. “Analysis of Lunar and Mars Habitation Modules for the Space Exploration Initiative (SEI),” L. C. Simonsen, Chapter 4 in Shielding Strategies for Human Space Exploration, J. W. Wilson, J. Miller, A. Konradi, and F. A. Cucinotta (eds.), NASA Conference Publication 3360, December, 1997.

    Google Scholar 

  8. Simonsen, loc. cit.

    Google Scholar 

  9. “Radiation Effects and Shielding Requirements in Human Missions to Moon and Mars,” D. Rapp, http://www.marsjournal.org/contents/2006/0004/files/rapp_mars_2006_0004.pdf

  10. Managing Lunar, Radiation Risks, Part I: Cancer, Shielding Effectiveness, Francis A. Cucinotta, Myung-Hee Y. Kim, and Lei Ren, NASA/TP-2005-213164, 2005.

    Google Scholar 

  11. “Effects of long-duration space flight on calcium metabolism: Review of human studies from Skylab to the present,” G. Donald Whedon and Paul C. Rambaut, Acta Astronautica, Vol. 58, 59–81, 2006.

    Article  Google Scholar 

  12. Artificial Gravity for Human Exploration Missions, K. Joosten (NASA-JSC), NEXT Briefing, July 16, 2002; Human Mars Exploration Mission Architectures and Technologies, J. Connolly and K. Joosten (NASA-JSC), January 6, 2005; Artificial Gravity for Exploration Class Missions? W. H. Paloski, (NASA-JSC) September 28, 2004.

    Google Scholar 

  13. “Artificial Gravity: Head Movements During Short Radius Centrifugation,” Laurence R. Young, Heiko Hecht, Lisette E. Lyne, Kathleen H. Sienko, Carol C. Cheung, Jessica Kavelaars, Acta Astronautica, Vol. 49,No. 3–10, 215–226, 2001.

    Article  Google Scholar 

  14. Scientific American, March, 2000; Addendum II: Mars Direct—A Practical Low-Cost Approach to Near-Term Piloted Mars Missions, http://www.iaanet.org/p_papers/add2.html ; and Mars Direct: A Simple, Robust, and Cost Effective Architecture for the Space Exploration Initiative, Robert M. Zubrin, David A. Baker and Owen Gwynne, AIAA-91-0328.

  15. A New Plan for Sending Humans to Mars: The Mars Society Mission, California Institute of Technology, 1999, Contributors: Christopher Hirata, Jane Greenham, Nathan Brown, and Derek Shannon, Advisor: James D. Burke, Jet Propulsion Laboratory.

    Google Scholar 

  16. http://www.spaceref.com/news/viewsr.html?pid=19094

  17. http://www.ingentaconnect.com/content/asma/asem/2005/00000076/A00106s1/art00012 ; http://www.anacapasciences.com/publications/Astrolabe.pdf

  18. A New Plan for Sending Humans to Mars: The Mars Society Mission, California Institute of Technology, 1999, Contributors: Christopher Hirata, Jane Greenham, Nathan Brown, and Derek Shannon, Advisor: James D. Burke, Jet Propulsion Laboratory.

    Google Scholar 

  19. Martian Habitat Design, Mars Or Bust (MOB), University Of Colorado, Boulder, Aerospace Engineering Sciences, ASEN 4158/5158, December 17, 2003.

    Google Scholar 

  20. “Living in Space: Considerations for Planning Human Habitats Beyond Earth, Sasakawa Outreach, Vol. 1,No. 9, October/December, 1988 (Special Information Topic Issue).

    Google Scholar 

  21. “Mars Habitat modules: Launch, scaling and functional design considerations,” L. Bell and G. D. Hines, Acta Astronautica, Vol. 57,No. 1, 48–58, July 2005.

    Article  Google Scholar 

  22. Inflatable Composite Habitat Structures for Lunar and Mars Exploration, D. Cadogan, J. Stein, and M. Grahne, IAA-98-IAA.13.2.04.

    Google Scholar 

  23. Sizing of an Entry, Descent, and Landing System for Human Mars Exploration, John A. Christian, Grant Wells, Jarret Lafleur, Kavya Manyapu, Amanda Verges, Charity Lewis, and Robert D. Braun, Georgia Institute of Technology, preprint, 2006.

    Google Scholar 

  24. Entry, Descent, and Landing Challenges of Human Mars Exploration, G. Wells, J. Lafleur, A. Verges, K. Manyapu, J. Christian, C. Lewis, and R. Braun, AAS 06-072; “Mars Exploration Entry, Descent and Landing Challenges,” R. D. Braun and R. M. Manning, Aerospace Conference, 2006 IEEE, March 2006; Sizing of an Entry, Descent, and Landing System for Human Mars Exploration, John A. Christian, Grant Wells, Jarret Lafleur, Kavya Manyapu, Amanda Verges, Charity Lewis, and Robert D. Braun, Georgia Institute of Technology, preprint, 2006.

    Google Scholar 

  25. Entry, Descent, and Landing Challenges of Human Mars Exploration, G. Wells, J. Lafleur, A. Verges, K. Manyapu, J. Christian, C. Lewis, and R. Braun, R., AAS 06-072.

    Google Scholar 

  26. “Mars Exploration Entry, Descent and Landing Challenges,” R. D. Braun and R. M. Manning, Aerospace Conference, 2006 IEEE, March 2006.

    Google Scholar 

  27. Sizing of an Entry, Descent, and Landing System for Human Mars Exploration, John A. Christian, Grant Wells, Jarret Lafleur, Kavya Manyapu, Amanda Verges, Charity Lewis, and Robert D. Braun, Georgia Institute of Technology, preprint, 2006.

    Google Scholar 

  28. Systems for Pinpoint Landing at Mars, Aron A. Wolf, Claude Graves, Richard Powell, and Wyatt Johnson, AAS 04-272.

    Google Scholar 

  29. Trades for Mars Pinpoint Landing, Aron A. Wolf, Jeff Tooley, Scott Ploen, Mark Ivanov, Behcet Acikmese, and Konstantin Gromov, IEEEAC Paper #1661 (2006).

    Google Scholar 

  30. “Aerocapture, Entry, Descent and Landing (AEDL) Capability Evolution toward Human-Scale Landing on Mars,” Rob Manning, Capability Roadmap # 7: Human Planetary Landing Systems, March 29, 2005.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2008). Critical Mars mission elements. In: Human Missions to Mars. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72939-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72939-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72938-9

  • Online ISBN: 978-3-540-72939-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics