Skip to main content

Incorporating DTI Data as a Constraint in Deformation Tensor Morphometry Between T1 MR Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4584))

Abstract

Deformation tensor morphometry provides a sensitive approach to detecting and mapping subtle volume changes in the brain from conventional high resolution T1W MRI data. However, it is limited in its ability to localize volume changes within sub-regions of uniform white matter in T1W MRI. In contrast, lower resolution DTI data provides valuable complementary microstructural information within white matter. An approach to incorporating information from DTI data into deformation tensor morphometry of conventional high resolution T1W imaging is described. A novel mutual information (MI) derived criteria is proposed, termed diffusion paired MI, using an approximation to collective many-channel MI between all images. This approximation avoids the evaluation of high dimensional joint probability distributions, but allows a combination of conventional and diffusion data in a single registration criteria. The local gradient of this measure is used to drive a viscous fluid registration between repeated DTI-MRI imaging studies. Results on example data from clinical studies of Alzheimer’s disease illustrate the improved localization of tissue loss patterns within regions of white matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, D.C., Gee, J.C., Bajcsy, R.K.: Strategies for data reorientation during nonrigid warps of diffusion tensor image. In: Taylor, C., Colchester, A. (eds.) MICCAI’99. LNCS, vol. 1679, pp. 463–472. Springer, Heidelberg (1999)

    Google Scholar 

  2. Basser, P.J., Mattiello, J., Bihan, D.L.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Mag. Res. 103, 247–254 (1994)

    Article  Google Scholar 

  3. Cao, Y., Miller, M., Mori, S., Winslow, R., Younes, L.: Large deformation diffeomorphic metric mapping of fiber orientations. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, IEEE 2005 (2005)

    Google Scholar 

  4. Cao, Y., Miller, M., Mori, S., Winslow, R., Younes, L.: Diffeomoprphic matching of diffusion tensor images. In: Proceedings of the Computer Vision and Pattern Recognition Workshop (2006)

    Google Scholar 

  5. Cardenas, V.A., Studholme, C., Gazdzinski, S., Durazzo, T.C., Meyerhoff, D.J.: Deformation based morphometry of brain changes in alcohol dependence and abstinence. Neuroimage 34, 879–887 (2007)

    Article  Google Scholar 

  6. Christensen, G.E., Miller, M.I., Vannier, M.W.: Individualizing neuroanatomical atlases using a massively parallel computer. Computer, pp. 32–38 (1996)

    Google Scholar 

  7. D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis 7, 565–575 (2003)

    Article  Google Scholar 

  8. Freeborough, P.A., Fox, N.C.: Modeling brain deformations in Alzheimer’s disease by fluid registration of serial 3D MR images. Journal of Computer Assisted Tomography 22(5), 838–843 (1998)

    Article  Google Scholar 

  9. Hermosillo, G., Chefd’hotel, C., Faugeras, O.: Variational methods for multimodal image matching. International Journal of Computer Vision 50(3), 329–343 (2002)

    Article  MATH  Google Scholar 

  10. Jernigan, T.L., Archibald, S.L., Fennema-Notestine, C., Gamst, A.C., Stout, J.C., Bonner, J., Hesselink, J.R.: Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging 22(4), 581–591 (2001)

    Article  Google Scholar 

  11. Pluim, J., Maintz, J.B., Viegever, M.A.: Mutual-information-based registration of medical images: A survey. IEEE Transactions on Medical Imaging 22(8), 986–1004 (2003)

    Article  Google Scholar 

  12. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C. Cambridge University Press, Cambridge, England (1992)

    Google Scholar 

  13. Studholme, C., Constable, R.T., Duncan, J.S.: Accurate alignment of functional EPI data to anatomical MRI using a physics based distortion model. IEEE Transactions on Medical Imaging 19(11), 1115–1127 (2000)

    Article  Google Scholar 

  14. Studholme, C., Drapaca, C., Iordanova, B., Cardenas, V.: Deformation based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE transactions on Medical Imaging 25(5), 626–639 (2006)

    Article  Google Scholar 

  15. Studholme, C., Hill, D.L.G., Hawkes, D.: Incorporating connected region labelling into automated image registration using mutual information. In: Studholme, C., Hill, D.L.G., Hawkes, D. (eds.) Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 23–31. IEEE Computer Society Press, Washington, DC, USA (1996)

    Chapter  Google Scholar 

  16. Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 32(1), 71–86 (1999)

    Article  Google Scholar 

  17. Studholme, C., Hill, D.L.G., Maisey, M.N., Hawkes, D.: Registration measures for automated 3D alignment of PET and intensity distorted MR images. In: Proceedings in Image Fusion and Shape Variability Techniques, pp. 186–193. Leeds University Press (1996)

    Google Scholar 

  18. Thevenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing 9(12), 2083–2099 (2000)

    Article  MATH  Google Scholar 

  19. Wahba, G.: Spline Models for Observational Data. Society for Industrial and Applied Mathematics, Philadelphia (1990)

    Google Scholar 

  20. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor MR images with explicit orientation optimization. Medical Image Analysis 10(5), 764–785 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Studholme, C. (2007). Incorporating DTI Data as a Constraint in Deformation Tensor Morphometry Between T1 MR Images. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics