Skip to main content

The TITAN mass measurement facility at TRIUMF-ISAC

  • Conference paper
TCP 2006

Abstract

The TITAN facility at TRIUMF-ISAC will use four ion traps with the primary goal of determining nuclear masses with high precision, particularly for short lived isotopes with lifetimes down to approximately 10 ms. The design value for the accuracy of the mass measurement is 1 × 10-8. The four main components in the facility are an RF cooier/buncher (RFCT) receiving the incoming ion beam, an electron beam ion trap (EBIT) to breed the ions to higher charge states, a cooler Penning trap (CPET) to cool the highly charged ions, and finally the measurement Penning trap (MPET) for the precision mass determination. Additional goals for this system are laser spectroscopy on ions extracted from the RFCT and beta spectroscopy in the EBIT (in Penning trap mode) on ions that are purified using selective buffer gas cooling in the CPET. The physics motivation for the mass measurements are manifold, from unitarity tests of the CKM matrix to nuclear structure very far from the valley of stability, nuclear astrophysics and the study of halo-nuclei. As a first measurement the mass of 11Li will be determined. With a lifetime of 8.7 ms and a demonstrated production rate of 4 × 10-4 ions/sec at ISAC the goal for this measurement at TITAN is a relative uncertainty of 5 × 10-8. This would check previous conflicting measurements and provide information for nuclear theory and models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dilling, J., et ai.: Nucl. Instrum. Methods B204, 492 (2003)

    Article  ADS  Google Scholar 

  2. Billing, J., et al.: Int. J. Mass Spectrom. 251, 198 (2006)

    Article  Google Scholar 

  3. Dombsky, M., et al.: Nucl. Instrum. Methods A701, 484c (2002)

    Google Scholar 

  4. Savard, G., et al.: Phys. Rev. Lett. 95, 102501 (2005)

    Article  ADS  Google Scholar 

  5. Rodriguez, D., et al.: Phys. Rev. Lett. 93, 161104 (2004)

    Article  ADS  Google Scholar 

  6. Bollen, G., et al.: Phys. Rev. Lett. 96, 152501 (2006)

    Article  ADS  Google Scholar 

  7. Eronen, T., et al.: Phys. Lett. B96, 191 (2006)

    Article  ADS  Google Scholar 

  8. Rahaman, S., et al.: Int. J. Mass Spectrom. 251, 146 (2006)

    Article  ADS  Google Scholar 

  9. Baum, K.: Phys. Rep. 425, 1 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Frekers, D., et al.: Can J. Phys. 85, 57 (2007)

    Article  ADS  Google Scholar 

  11. Lapierre, A., et al.: Phys. Rev. Lett. 95, 183001 (2005)

    Article  ADS  Google Scholar 

  12. Lunney, D., et al.: Rev. Mod. Phys. 75, 1021 (2003).

    Article  ADS  Google Scholar 

  13. Froehlich, C., et al.: Phys. Rev. Lett. 96, 142502 (2006)

    Article  ADS  Google Scholar 

  14. Pruet, J., et al.: Astrophys. J. 644, 1028 (2006)

    Article  ADS  Google Scholar 

  15. Tanihata, L., et al.: Phys. Rev. Lett. 55, 2670 (1985)

    Article  ADS  Google Scholar 

  16. Bachelet, C, et al.: Eur. Phys. J. A25 s01, 31 (2005)

    Article  Google Scholar 

  17. Audi, G., et al.: Nucl. Phys. A729, 337 (2003)

    Article  ADS  Google Scholar 

  18. Sanchez, R., et al.: Phys. Rev. Lett. 96, 033002 (2006)

    Article  ADS  Google Scholar 

  19. Hardy, J.C, Towner, LS.: Phys. Rev. Lett. 94, 09202 (2005)

    Google Scholar 

  20. Savajols, H., et al.: Eur. Phys. J. A25, 23 (2005)

    Article  Google Scholar 

  21. Smith, M., et al.: Hyperfine Interact., doi:10.1007/s10751-007-9554-z

    Google Scholar 

  22. Froese, M., et al.: Hyperfine Interact., doi: 10.1007/s10751-007-9546-z

    Google Scholar 

  23. Ke, Z., et al.: Hyperfine Interact., doi:10.1007/s10751-007-9548-x

    Google Scholar 

  24. Rainville, S., et al.: Science 303, 334 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Delheij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Delheij, P. et al. (2007). The TITAN mass measurement facility at TRIUMF-ISAC. In: Dilling, J., Comyn, M., Thompson, J., Gwinner, G. (eds) TCP 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73466-6_35

Download citation

Publish with us

Policies and ethics